Another trillion tonnes: 250 years of global material use data

Graph of Global materials use 1850-2100
Global materials use, 1850-2100

Want to understand your society and economy and the fate of petro-industrial civilization?  If so, don’t “follow the money.”  The stock market casino, quantitative easing, derivatives and other “financial innovations,” and the trillions of e-dollars that flit through the global monetary system each day obscure the real economy—the production and destruction of actual wealth: mining, farming, processing, transport, manufacturing, consumption, disposal.  To understand where we are and where we may be going, we must follow more tangible flows—things that are real.  We must follow the oil, coal, steel, concrete, grain, copper, fertilizers, salt, gravel, and other materials.

Our cars, homes, phones, foods, fuels, clothes, and all the other products we consume or aspire to are made out of stuff—out of materials, out of wood, iron, cotton, etc.   And our economies consume enormous quantities of those materials—tens-of-billions of tonnes per year.

The graph above shows 250 years of actual and projected material flows through our global economy.  The graph may initially appear complicated, because it brings together seven different sources and datasets and includes a projection to the year 2100.  But the details of the graph aren’t important.  What is important is the overall shape: the ever-steepening upward trendline—the exponential growth.

In 1900, global material flows totalled approximately 7 billion tonnes.  The technical term for these material flows is “utilized materials”—the stuff we dig out of mines, pump up from oil or natural gas wells, cut down in forests, grow on farms, catch from the sea, dig out of quarries, and otherwise appropriate for human uses.  These tonnages do not include water, nor do they include unused overburden, but they do include mine tailings, though this last category adds just a few percent to the total.

Between 1900 and 2000, global material tonnage increased sevenfold—to approximately 49 billion tonnes (Krausman et al. 2009).  Tonnage rose to approx. 70 billion tonnes by 2010 (UNEP/Schandl 2016), and to approx. 90 billion tonnes by 2018 (UNEP/Bringezu 2018).  At the heart of our petro-industrial consumerist civilization is a network of globe-spanning conveyors that, each second, extract and propel nearly 3,000 tonnes of materials from Earth’s surface and subsurface to factories, cities, shops, and homes, and eventually on to landfills, rivers and oceans, and the atmosphere.  At a rate of a quarter-billion tonnes per day we’re turning the Earth and biosphere into cities, homes, products, indulgences, and fleeting satisfactions; and emissions, by-products, toxins, and garbage.

And these extraction, consumption, and disposal rates are projected to continue rising—to double every 30 to 40 years (Lutz and Giljum 2009).  Just as we increased material use sevenfold during the 20th century we’re on track to multiply it sevenfold during the 21st.  If we maintain the “normal” economic growth rates of the 20th century through the 21st we will almost certainly increase the volume and mass of our extraction, production, and disposal sevenfold by 2100.

But 2100 is a long way away.  Anything could happen by then.  Granted.  So let’s leave aside the long-term and look only at the coming decade.  Material throughput now totals about 90 billion tonnes per year, and is projected to rise to about 120 billion tonnes per year over the coming decade.  For ease of math, let’s say that the average over the coming decade will be 100 billion tonnes per year.  That means that between 2019 and 2029 we will extract from within the Earth and from the biosphere one trillion tonnes of materials: coal, oil, wood, fish, nickel, aluminum, chromium, uranium, etc.  …one trillion tonnes.  And we’ll send most of that trillion tonnes on into disposal in the ground, air, or water—into landfills, skyfills, and seafills.  In the coming decade, when you hear ever-more-frequent reports of the oceans filling with plastic and the atmosphere filling with carbon, think of that trillion tonnes.

Postscript: “dematerialization”

At conferences and in the media there’s a lot of talk of “dematerialization,” and its cousin “decarbonization.”  The idea is this: creating a dollar of economic activity used to require X units of energy or materials, but now, in countries such as Canada and the United States, creating a dollar of economic activity requires only two-thirds-X units.  Pundits and officials would have us believe that, because efficiency is increasing and less material and energy are needed per dollar, the economy is being “dematerialized.”  They attempt to show that the economy can grow and grow but we need not use more materials or energy.  Instead of consuming heavy steel cars, we will consume apps, massages, and manicures.  But this argument is wrong.  Global material and energy use increased manyfold during the 20th century.  The increases continue.  A business-as-usual scenario will see energy and materials use double every 30 to 40 years.  And just because the sizes of our economies, measured in abstract currencies, are growing faster, this does not change the fact that our use of energy and materials is growing.  “Dematerialization” has no useful meaning in a global economy in which we are using 90 billion tonnes of materials per year and projecting the use of 180 billion tonnes by 2050.  Our rate of extraction and consumption of materials is rising; the fact that the volume of dollar flows is rising faster is merely a distraction.

Sources for material flow tonnage:

Fridolin Krausmann et al., “Growth in Global Materials Use, GDP, and Population During the 20th Century,” Ecological Economics 68, no. 10 (2009).

Christian Lutz and Stefan Giljum, “Global Resource Use in a Business-as-Usual World: Updated Results from the GINFORS Model,” in Sustainable Growth and Resource Productivity: Economic and Global Policy Issues, ed. Bleischwitz et al. (Sheffield, UK: Greenleaf Publishing, 2009).

Stefan Giljum et al., Sustainable Europe Research Institute (SERI), “Resource Efficiency for Sustainable Growth: Global Trends and European Policy Scenarios,” background paper, delivered Sept. 10, 2009, in Manila, Philippines.

Julia Steinberger et al., “Global Patterns of Materials Use: A Socioeconomic and Geophysical Analysis,” Ecological Economics 69, no. 5 (2010).

UN Environmental Programme (UNEP) and H. Schandl et al., Global Material Flows and Resource Productivity: An Assessment Study of the UNEP International Resource Panel (Paris: UNEP, 2016).

Krausmann et al., “Long-term Trends in Global Material and Energy Use,” in Social Ecology: Society-Nature Relations across Time and Space, ed. Haberl et al. (Switzerland: Springer, 2016).

United Nations Environment Programme (UNEP), International Resource Panel, and Stefan Bringezu et al., Assessing Global Resource Use: A Systems Approach to Resource Efficiency and Pollution Reduction (Nairobi: UNEP, 2017).

Organization for Economic Cooperation and Development (OECD), Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences (Paris: OECD Publishing, 2019)

Surrounded by Solutions: electric buses, solar panels, high-speed trains, and more

Graph of lifecycle GHG emissions for buses using various energy sources
Lifecycle greenhouse gas emissions for buses using various energy sources

Most North Americans have never seen an electric bus.  Admittedly, momentum is building—some jurisdictions, notably California, have committed to buying only electric transit buses after 2029.  But such buses remain rare in Canada and the United States.  A 2018 report found that just 0.2% of US buses (two in a thousand) were electric, and that tiny percentage is rising very slowly.  New York City provides an example of the modest pace of e-bus adoption—a three-year pilot project, adding just 10 electric buses to its fleet of 5,700.

How’s this for a contrast?  Shenzhen China has 16,000 electric buses—100% of its fleet.  And that city is not unusual in China.  Overall, that country has more than 400,000 electric buses, and is adding 100,000 more each year, with numbers projected to reach one million by 2023.

The graph above shows that electric buses can cut greenhouse gas (GHG) emissions by 60 percent (1,078 grams COequivalent per mile for electric vs. 2,680 grams for diesel).  These low emission values for e-buses take into account that much of North American electricity is generated by burning coal or natural gas.  If we assume a future in which most of our electricity can come from cleaner solar and wind sources then e-buses can reduce emissions by 85 percent compared to diesel.

In addition to having most of the planet’s low-emission buses, China is also leading the world in electric car production and sales.  In 2017, China produced more than half the world’s output of electric cars.  Chinese motorists purchased 580,000 EVs in 2017 while Americans purchased about 200,000 and Canadians 15,000.  Admittedly, many of those Chinese autos are small (think Smart Cars, not Teslas), but that is rapidly changing as Chinese cars become larger and more luxurious.  Indeed, their more modest size can be seen as part of the solution, as the production of small EVs creates lower emissions than the production of large ones.

China is also leading the world in high-speed rail—passenger trains that travel 250 to 350 km/h.  China has added 30,000 kms of new high-speed rail track since 2003 and plans to add another 10,000 kms by 2025, for a total of 40,000 kms—enough to circle the planet.  (For more information on the tremendous potential of high-speed rail, see this blog post, and this one.)

Finally, and this is well known, China dominates the world in solar-panel production and solar-power generation, with production and installation rates several times those in the Americas or EU.  Moreover, China is not the only country shaming us in terms of clean energy adoption: India installed more solar power capacity than the US in 2017 and again in 2018, and far more than Canada.

The four examples above illustrate something important about the current climate crisis: solutions are thick on the ground, but we in North America are simply choosing not to adopt them.  China has made itself the world’s largest solar panel manufacturer; the US has doubled-down on coal, and Canada continues to pin its economic fortunes on the carbon-fuel sector.  China is the world’s largest EV producer; in Canada and the US the best-selling vehicle is the Ford F-150.  China has built tens-of-thousands of kms of passenger-rail track; North Americans have doubled air travel.  We’re walking past mature and promising technologies—choosing to ignore them.

Granted, China has a larger population, but we in North America are far richer.  The combined size of the Canadian and US economies is double that of China’s economy.  Canadian per-capita GDP is five times higher than that of China, and US per-capita GDP is seven times higher.  For every dollar the average Chinese person has to spend on an electric car or solar panels, Canadians and Americans have five to seven dollars.

Moreover, we’re not dependent on foreign technologies or companies.  Canadian Solar, headquartered in Guelph, is one of the six largest solar panel companies in the world.  Bombardier, headquartered in Montreal, is one of the three largest producers of high-speed rail equipment in the world—supplying China with locomotives and rolling stock.  And New Flyer Bus Company, headquartered in Winnipeg, has delivered electric buses to several US and Canadian cities.

We’re not short of high-tech corporations—many world-leading technology companies are headquartered in Canada and the US.  We’re not without technological options.  And we’re not short of funds.  We have extremely promising options and opportunities.  We’re not doomed.  But we are reckless, indulgent, short-sighted, and despicably immoral.  And by continuing to act in the ways we are we will probably manage to doom ourselves.  But that need not be the case.  Solutions abound.

Let’s not dwell on the negative.  Instead, let’s acknowledge the tremendous upside potential and technological possibilities.  Solar panels and electric trains, buses, and cars are solutions close at hand.  Within a decade, North America could host tens-of-thousands of kms of new passenger rail track, hundreds-of-thousands of electric buses, tens-of-millions of electric vehicles, and billions of new solar panels.  This wouldn’t be a complete solution to the climate crisis, but it would be a very good start.

Graph source: Jimmy O’Dea and the Union of Concerned Scientists

Moore’s Law and me

Graph of Transistor count and Moore's Law, 1970-2016
Transistor count and Moore's Law, 1970-2016

In 1985 I bought an Apple Macintosh computer.  It cost $3,500 ($7,000 in today’s dollars).  Soon after, Apple and other companies started selling external hard-disk drives for the Mac.  They, too, were expensive.  But in 1986 or ’87 the price for a hard disk came down to an “affordable” $2,000, and I and many Mac owners were tempted.  In the mid-1980s, a 20-megabyte (MB) hard drive cost $2,000 ($4,000 in today’s dollars).  That’s $200 per MB (in today’s dollars).

Fast forward to 2018.  On my way home last week I stopped by an office-supply store and paid $139 for a 4 terabyte (TB) hard drive.  That’s $34 per TB.

What would that 4 TB hard drive have cost me if prices had remained the same as in the 1980s?  Well, one terabyte is equal to a million megabytes.  So, that 4 TB drive contains 4 million MBs.  At $200 per MB (the 1980s price) the hard drive I picked up from Staples would have cost me $800 million dollars—not much under a billion once I paid sales taxes.  But it didn’t cost that: it was just $139.  Hard disk storage capacity has become millions of times cheaper in just over a generation.  Or, to put it another way, for the same money I can buy millions of times more storage.

I can reprise these same cost reductions, focusing on computer memory rather than hard disk capacity.  My 1979 Apple II had 16 kilobytes of memory.  My recently purchased Lenovo laptop has 16 gigabytes—a million times more.  Yet my new laptop cost a fraction of the inflation-adjusted prices of that Apple II.  Computer memory is millions of times cheaper.  The same is true of processing power—the amount of raw computation you can buy for a dollar.

The preceding trends have been understood for half a century—the basis for Moore’s Law.  Gordon Moore was a founder of Intel Corporation, one of the world’s leading computer processor and “chip” makers.  In 1965, Moore published a paper in which he observed that the number of transistors in computer chips was doubling every two years, and he predicted that this doubling would go on for some years to come.  (See this post for data on the astronomical rate of annual transistor production.)  Related to Moore’s Law is the price-performance ratio of computers.  Loosely stated, a given amount of money will buy twice as much computing power two or three years from now.

The graph above illustrates Moore’s Law and shows the transistor count for many important computer central processing units (CPUs) over the past five decades. (Here’s a link to a high-resolution version of the graph.)  Note that the graph’s vertical axis is logarithmic; what appears as a doubling is actually a far larger increase.  In the lower-left, the graph includes the CPU from my 1979 Apple II computer, the Motorola/MOS 6502.  That CPU chip contained about 3,500 transistors.  In the upper right, the graph includes the Intel i7 processor in my new laptop. That CPU contains about 2,000,000,000 transistors—roughly 500,000 times more than my Apple II.

Assuming a doubling every 2 years, in the 39 years between 1979 (my Apple II) and 2018 (My Lenovo) we should have seen 19.5 doublings in the number of transistors—about a 700,000-fold increase.  This number is close to the 500,000-fold increase calculated above by comparing the number of transistors in a 6502 chip to the number in an Intel i7 chip.  Moreover, computing power has increased even faster than the huge increases in transistor count would indicate.  Computer chips cycle faster today, and they also sport sophisticated math co-processors and graphics chips.

In terms of civilization and the future, the key questions include: can these computing-power increases continue?  Can the computers of the 2050s be hundreds-of-thousands of times more powerful than those of today?  Can we continue making transistors smaller and packing twice as many onto a chip every two years?  Can Moore’s Law continue unabated?  Probably not.  Transistors can only be made so small.  The rate of increase in computing power will slow.  We won’t see a million-fold increase in the coming 40 years like we saw in the past 40.  But does that matter?  What if the rate of increase in computing power fell by half—to a doubling every four years instead of every two?  That would mean that in 2050 our computers would still be 256 times more powerful than they are now.  And in 2054 they would be 512 times more powerful.  And in 2058, 1024 times more powerful.  What would it mean to our civilization if each of us had access to a thousand times more computing power?

One could easily add a last, pessimistic paragraph—noting the intersection between exponential increases in computing power, on the one hand, and climate change and resource limits, on the other.  But for now, let’s leave unresolved the questions raised in the preceding paragraph.  What is most important to understand is that technologies such as solar panels and massively powerful computers give us the option to move in a different direction.  But we have to choose to make changes.  And we have to act.  Our technologies are immensely powerful, but our efforts to use those technologies to avert calamity are feeble.  Our means are magnificent, but our chosen ends are ruinous.  Too often we become distracted by the novelty and power of our tools and fail to hone our skills to use those tools to build livable futures.

 

Electric car numbers, and projections to 2030

Graph of global electric vehicle numbers, 2013-17, and national data
Number of electric cars on the road, 2013 to 2017, and national data

In just two years, 2013 to 2015, the number of electric cars worldwide more than doubled.  And in the following two years, 2015 to 2017, the number more than doubled again, to just over 3 million.  This exponential growth means that electric vehicles (EVs)* will soon make up a large portion of the global car fleet.

This week’s graph is reprinted from Global EV Outlook 2018, the latest in a series of annual reports compiled by the International Energy Agency (IEA).

The graphs below show IEA projections of the number of EVs in the world by 2030 under two scenarios.  The first, the “New Policies Scenario,” takes into account existing and announced national policies.  Under this scenario, the number of EVs on the road is projected to reach 125 million by 2030.

The second scenario is called “EV30@30.”  This scenario is based on the assumption that governments will announce and implement new policies that will increase global EV penetration to 30 percent of new car sales by 2030—a 30 percent sales share.  This 30 percent share is roughly what is needed to begin to meet emission-reduction commitments made in the lead-up to the 2015 Paris climate talks.  Under this scenario, the number of EVs on the road could reach 228 million by 2030.

In either case, whether there are 125 million EV’s on the road in twelve years or 228 million, the result will be an impressive one, given that there were fewer than a million just four years ago.

Electric cars are not a panacea, but they do represent an important transition technology; electrifying much of the global car fleet can buy us the time we need to build zero-emission train and transit systems.  Thus, it is very important that we move very rapidly to maximize the number of EVs built and sold.  But the IEA is clear: EV adoption will depend on ambitious, effective government action.  The 228 million EVs projected under the EV30@30 Scenario will only exist if governments implement a suite of aggressive new policies.  The IEA states that:

“The uptake of electric vehicles is still largely driven by the policy environment.  The ten leading countries in electric vehicle adoption all have a range of policies in place to promote the uptake of electric cars.  Effective policy measures have proved instrumental in making electric vehicles more appealing to customers…, reducing risks for investors, and encouraging manufacturers to scale up production ….  Key examples of instruments employed by local and national governments to support EV deployment include public procurement programmes…, financial incentives to facilitate the acquisition of EVs and cut their usage cost (e.g. by offering free parking), and a variety of regulatory measures at different administrative levels, such as fuel-economy standards and restrictions on the circulation of vehicles based on tailpipe emissions performance.”

In 2018, about 95 million passenger cars and commercial vehicles were sold worldwide.  About 1 million were electric—about 1 percent.  The goal is to get to 30 percent in 12 years.  Attaining that goal, and thereby averting some of the worst effects of climate change, will require Herculean efforts by policymakers, regulators, international bodies, and automakers.

* There are two main types of EVs.  The first is plug-in hybrid electric vehicles (PHEVs).  These cars have batteries, can be plugged in, and can be driven a limited distance (usually tens of kilometres) using electrical power only, after which a conventional piston engine engages to charge the batteries or assist in propulsion.  Examples of PHEVs include the Chevrolet Volt and Toyota Prius Prime.  The second type is the battery electric vehicle (BEV).  BEVs have larger batteries, longer all-electric range (150 to 400 kms), and no internal combustion engines.  Examples of BEVs include the Chevrolet Bolt, Nissan Leaf, and several models from Tesla.  The term “electric vehicle” (EV) encompasses both PHEVs and BEVs.

 

 

If you’re for pipelines, what are you against?

Graph of Canadian greenhouse gas emissions, by sector, 2005 to 2039
Canadian greenhouse gas emissions, by sector, 2005 to 2030

As Alberta Premier Notley and BC Premier Horgan square off over the Kinder Morgan / Trans Mountain pipeline, as Alberta and then Saskatchewan move toward elections in which energy and pipelines may be important issues, and as Ottawa pushes forward with its climate plan, it’s worth taking a look at the pipeline debate.  Here are some facts that clarify this issue:

1.  Canada has committed to reduce its greenhouse gas (GHG) emissions by 30 percent (to 30 percent below 2005 levels by 2030).

2.  Oil production from the tar sands is projected to increase by almost 70 percent by 2030 (From 2.5 million barrels per day in 2015 to 4.2 million in 2030).

3.  Pipelines are needed in order to enable increased production, according to the Canadian Association of Petroleum Producers (CAPP) and many others.

4.  Planned expansion in the tar sands will significantly increase emissions from oil and gas production.  (see graph above and this government report)

5.  Because there’s an absolute limit on our 2030 emissions (515 million tonnes), if the oil and gas sector is to emit more, other sectors must emit less.  To put that another way, since we’re committed to a 30 percent reduction, if the tar sands sector reduces emissions by less than 30 percent—indeed if that sector instead increases emissions—other sectors must make cuts deeper than 30 percent.

The graph below uses the same data as the graph above—data from a recent report from the government of Canada.  This graph shows how planned increases in emissions from the Alberta tar sands will force very large reductions elsewhere in the Canadian economy.

Graph of emissions from the Canadian oil & gas sector vs. the rest of the economy, 2015 & 2030
Emissions from the Canadian oil & gas sector vs. the rest of the economy, 2015 & 2030

Let’s look at the logic one more time: new pipelines are needed to facilitate tarsands expansion; tarsands expansion will increase emissions; and an increase in emissions from the tarsands (rather than a 30 percent decrease) will force other sectors to cut emissions by much more than 30 percent.

But what sector or region or province will pick up the slack?  Has Alberta, for instance, checked with Ontario?  If Alberta (and Saskatchewan) cut emissions by less than 30 percent, or if they increase emissions, is Ontario prepared to make cuts larger than 30 percent?  Is Manitoba or Quebec?  If the oil and gas sector cuts by less, is the manufacturing sector prepared to cut by more?

To escape this dilemma, many will want to point to the large emission reductions possible from the electricity sector.  Sure, with very aggressive polices to move to near-zero-emission electrical generation (policies we’ve yet to see) we can dramatically cut emissions from that sector.  But on the other hand, cutting emission from agriculture will be very difficult.  So potential deep cuts from the electricity sector will be partly offset by more modest cuts, or increases, from agriculture, for example.

The graph at the top shows that even as we make deep cuts to emissions from electricity—a projected 60 percent reduction—increases in emissions from the oil and gas sector (i.e. the tar sands) will negate 100 percent of the progress in the electricity sector.  The end result is, according to these projections from the government of Canada, that we miss our 2030 target.  To restate: according to the government’s most recent projections we will fail to meet our Paris commitment, and the primary reason will be rising emissions resulting from tarsands expansion.  This is the big-picture context for the pipeline debate.

We’re entering a new era, one of limits, one of hard choices, one that politicians and voters have not yet learned to navigate.   We are exiting the cornucopian era, the age of petro-industrial exuberance when we could have everything; do it all; have our cake, eat it, and plan on having two cakes in the near future.  In this new era of biophysical limits on fossil fuel combustion and emissions, on water use, on forest cutting, etc. if we want to do one thing, we may be forced to forego something else.  Thus, it is reasonable to ask: If pipeline proponents would have us expand the tar sands, what would they have us contract?

Graph sources: Canada’s 7th National Communication and 3rd Biennial Report, December 2017

Global plastics production, 1917 to 2050

Graph of global plastic production, 1917 to 2017
Global plastic production, megatonnes, 1917 to 2017

This week’s graph shows global annual plastics production over the past 100 years.  No surprise, we see exponential growth—a hallmark of our petro-industrial consumer civilization.  Long-term graphs of nearly anything (nitrogen fertilizer production, energy use, automobile productiongreenhouse gas emissions, air travel, etc.) display this same exponential take-off.

Plastics present a good news / bad news story.  First, we should acknowledge that the production capacities we’ve developed are amazing!  Worldwide, our factories now produce approximately 400 million tonnes of plastic per year.  That’s more than a billion kilograms per day!  Around the world we’ve built thousands of machines that can, collectively, produce plastic soft-drink and water bottles at a rate of nearly 20,000 per second.  Our economic engines are so powerful that we’ve managed to double global plastic production tonnage in less than two decades.

But of course that’s also the bad news: we’ve doubled plastic production tonnage in less than two decades.  And the world’s corporations and governments would have us go on doubling and redoubling plastics production.  The graph below shows the projected four-fold increase in production tonnage by 2050.

Graph of global plastics production to 2050
Projected global plastics production to 2050

Source: UN GRID-Arendal

Plastics are a product of human ingenuity and innovation—one of civilization’s great solutions.  They’re lightweight, durable, airtight, decay resistant, inexpensive, and moldable into a huge range of products.  But projected 2050 levels of production are clearly too much of a good thing.  Our growth-addicted economic system has a knack for turning every solution into a problem—every strength into a weakness.

At current and projected production levels, plastics are a big problem.  Briefly:

1.  Plastics are forever—well, almost.  Except for the tonnage we’ve incinerated, nearly all the plastic ever produced still exists somewhere in the biosphere, although much of it is now invisible to humans, reduced to tiny particles in ocean and land ecosystems.  Plastic is great because it lasts so long and resists decay.  Plastic is a big problem for those same reasons.

2. Only 18 percent of plastic is recycled.  This is the rate for plastics overall, including plastics in cars and buildings.  For plastic packaging (water bottles, chip bags, supermarket packaging, etc.) the recycling rate is just 14 percent.  But much of that plastic inflow is excluded during the sorting and recycling process, such that only 5 percent of plastic packaging material is  actually returned to use through recycling.   And one third of plastic packaging escapes garbage collection systems entirely and is lost directly into the environment: onto roadsides or into streams, lakes, and oceans.

3. Oceans are now receptacles for at least 8 billion kilograms of plastic annually—equivalent to a garbage truck full of plastic unloading into the ocean every minute.  The growth rates projected above will mean that by 2050 the oceans will be receiving the equivalent of one truckload of plastic every 15 second, night and day.  And unless we severely curtail plastic production and dumping, by 2050 the mass of plastic in our oceans will exceed the mass of fish.  Once in the ocean, plastics persist for centuries, in the form of smaller and smaller particles.  This massive contamination comes on top of other human impacts: overfishing, acidification, and ocean temperature increases.

4. Plastic is a fossil fuel product.  Plastic is made from oil and natural gas feedstocks—molecules extracted from the oil and gas become the plastic.  And oil, gas, and other energy sources are used to power the plastic-making processes.  By one estimate, 4 percent of global oil production is consumed as raw materials for plastic and an additional 4 percent provides energy to run plastics factories.

5. Plastics contain additives than harm humans and other species: fire retardants, stabilizers, antibiotics, plasticizers, pigments, bisphenol A, phthalates, etc.  Many such additives mimic hormones or disrupt hormone systems.  The 150 billion kilograms of plastics currently in the oceans includes 23 billion kgs of additives, all of which will eventually be released into those ocean ecosystems.

It’s important to think about plastics, not just because doing so shows us that we’re doing something wrong, but because the tragic story of plastics shows us why and how our production and energy systems go wrong.  The story of plastics reveals the role of exponential growth in turning solutions into problems.  Thinking about the product-flow of plastics (oil well … factory … store … home … landfill/ocean) shows us why it is so critical to adopt closed-loop recycling and highly effective product-stewardship systems.  And the entire plastics debacle illustrates the hidden costs of consumerism, the collateral damage of disposable products, and the failure of “the markets” to protect the planet.

In a recent paper that takes a big-picture, long-term look at plastics, scientists advise that “without a well-designed … management strategy for end-of-life plastics, humans are conducting a singular uncontrolled experiment on a global scale, in which billions of metric tons of material will accumulate across all major terrestrial and aquatic ecosystems on the planet.”

Graph sources:
• 1950 to 2015 data from Geyer, Jambeck, and Law, “Production, Use, and Fate of All Plastics Ever Made,” Science Advances 3, no. 7 (July 2017).
• 2016 and 2017 data points are extrapolated at a 4.3 percent growth rate derived from the average growth rate during the previous 20 years.
• Pre-1950 production tonnage is assumed to be negligible, based on various sources and the very low production rates in 1950.

Happy motoring: Global automobile production 1900 to 2016

Graph of global automobile production numbers, various nations, historic, 1900 to 2016
Global automobile production (cars, trucks, and buses), 1900-2016

This week’s graph shows global automobile production over the past 116 years—since the industry’s inception.  The numbers include car, trucks, and buses.  The graph speaks for itself.  Nonetheless, a few observations may clarify our situation.

1.  Global automobile production is at a record high, increasing rapidly, and almost certain to rise far higher.

2. Annual production has nearly doubled since 1997—the year the world’s governments signed the Kyoto climate change agreement.

3. China is now the world’s largest automobile producer.  In terms of units made, Chinese production is double that of the United States.  This graph tells us something about the ascendancy of China.

4.  Most of the growth in the auto manufacturing sector is in Asia, especially Thailand, India, and China.  In 2000, those three nations together manufactured 3 million cars.  Last year their output totaled 34 million.  After 67 years of production, Australia is about to shut down its last automobile plant.  Most of its cars will be imported from Thailand, and perhaps a growing number  from China.

5. Auto production in “high-wage countries” is declining.  As noted, the Australian industry has been shuttered.  US production is down 5 percent since 2000, and Canadian production is down 20 percent.  Over that same period, production fell in France, Italy, and Japan, though not in Germany.  Since 2000, auto production increases in Mexico (+1.7 million) are roughly equal to decreases in Canada and the US (-1.2 million).

6. There are some surprises in the data:  Turkey, Slovakia, and Iran all make the  top-20 in terms of production numbers.

Graph sources: Motor Vehicle Manufacturers Association of the United States, World Motor Vehicle Data, 1981 Edition; Ward’s Communications, Ward’s World Motor Vehicle Data 2002; United States Department of Transportation, Bureau of Transportation Statistics, National Transportation Statistics, Table 1-23

Electric cars are coming…  Fast!

Graph of the number of electric vehicles worldwide and selected nations
Increase in the stock of electric vehicles: global and selected nations

When- and wherever it occurs, exponential growth is transformative.  After a long period of stagnation or slow increase, some important quantity begins doubling and redoubling.  The exponential growth in cloth, coal, and iron production transformed the world during the Industrial Revolution.  The exponential growth in the power and production volumes of transistors (see previous blog post)—a phenomenon codified as “Moore’s Law”—made possible the information revolution, the internet, and smartphones.  Electric cars and their battery systems have now entered a phase of exponential growth.

There are two categories of electric vehicles (EVs).  The first is plug-in hybrid electric vehicles (PHEVs).  These cars have batteries and can be driven a limited distance (usually tens of kilometres) using electrical power only, after which a conventional piston engine engages to charge the batteries or assist in propulsion.  Well-known PHEVs include the Chevrolet Volt and the Toyota Prius Plug-in.

The second category is the battery electric vehicle (BEV).  Compared to PHEVs, BEVs have larger batteries, longer all-electric range (150 to 400 kms), and no internal combustion engines.  Well-known BEVs include the Nissan Leaf, Chevrolet Bolt, and several models from Tesla.  The term electric vehicle (EV) encompasses both PHEVs and BEVs.

The graph above is reproduced from a very recent report from the International Energy Agency (IEA) entitled Global EV Outlook 2017.  It shows that the total number of electric vehicles in the world is increasing exponentially—doubling and redoubling every year or two.  In 2012, there we nearly a quarter-million EVs on streets and roads worldwide.  A year or two later, there were half-a-million.  By 2015 the number had surpassed one million.  And it is now well over two million.  Annual production of EVs is similarly increasing exponentially.  This kind of exponential growth promises to transform the global vehicle fleet.

But if it was just vehicle numbers and production volumes that were increasing exponentially this trend would not be very interesting or, in the end, very powerful.  More important, quantitative measures of EV technology and capacity are doubling and redoubling.  This second graph, below, taken from the same IEA report, shows the dramatic decrease in the cost of a unit of battery storage (the downward trending line) and the dramatic increase in the energy storage density of EV batteries (upward trending line).  If we compare 2016 to 2009, we find that today an EV battery of a given capacity costs one-third as much and is potentially one-quarter the size.  Stated another way, for about the same money, and packaged into about the same space, a current battery can drive an electric car three or four times as far.

Graph of electric vehicle battery cost and power density 2009 to 2016

Looking to the future, GM, Tesla, and the US Department of Energy all project that battery costs will decrease by half in the coming five years.  Though these energy density increases and cost decreases will undoubtedly plateau in coming decades, improvements underway now are rapidly moving EVs from the periphery to the mainstream.  EVs may soon eclipse internal-combustion-engine cars in all measures: emissions, purchase affordability, operating costs, performance, comfort, and even sales.

Source for graphs: International Energy Agency, Global EV Outlook 2017: Two Million and Counting

Deindustrialization: Or, what are half-a-billion Canadians and Americans going to do for a living?

Graph of United States Gross Domestic Product, by sector, 1947 to 2016, highlighting deindustrialization
United States Gross Domestic Product, by sector, 1947 to 2016

Canada and the US continue to undergo rapid deindustrialization.  Our economies are increasingly service-based, and that should worry us.

The graph above looks complicated, but the key idea is contained in two trends.  And both are negative.  First, note the declining contribution manufacturing is making to United States (US) Gross Domestic Product (GDP).  The red, dotted line shows manufacturing’s percentage contribution.

Manufacturing now makes up just 12 percent of US GDP, and less than 10 percent in Canada.  The decline of manufacturing is even more evident when we look at employment rather than GDP.  According to the US Bureau of Labor Statistics, goods-producing industries (manufacturing, mining, construction, agriculture, etc.) now employ roughly 15 percent of America’s working population.  Nearly 85 percent are employed in the service sector.  The situation is similar in Canada.  According to Statistics Canada data , approximately 77 percent of Canadian workers are employed in the service sector, and this percentage continues to rise.  Both nations continue to deindustrialize.

Second, note the rise in the importance of three service sectors: 1. Finance, insurance, real estate, and rentals (the broad blue line); 2. Professional and business services (green line); and 3. Education and healthcare (red line). A US economy built upon General Motors, General Electric, and U.S. Steel has given way to one built upon JPMorgan Chase, Walmart, and UnitedHealth Group.

Note, especially, the blue line: finance and real estate.  With the 2008 financial crisis still fresh in our minds, and its effects still resonating through global economies, it should worry North Americans that banking and real estate have replaced manufacturing as the one of the largest economic sectors.

Manufacturing is declining, our energy sectors may have to contract as we deal with climate change, most North American fisheries have been depleted and agriculture seems to need fewer farmers and workers each year, low-wage nations continue to claim Canadian and American jobs, and we’re told that the robots are coming.  By mid-century there will be more than 450 million people living in Canada and the US.  Every politician in every party and every engaged citizen should be asking the same question: what are nearly half-a-billion North Americans going to do for a living?

We are not doomed to decline, but decline will be our lot unless we actively engage in a collective democratic effort to build a new, sustainable economy for North America.

Graph source: US Dept. of Commerce, Bureau of Economic Analysis

 

Back on track: North America needs high-speed passenger rail

A graph of passenger rail utilization, selected nations, average kilometres per capita
Passenger train use, kilometers per person per year (average), selected countries, 2014 or 2015 data

Not every problem has a clear solution.  Here’s one that does.  The problem is the exponential growth in air travel and attendant greenhouse gas (GHG) emissions.  The solution is high-speed passenger rail.

Compared to airplanes, high-speed trains can move people faster, more comfortably and conveniently, more cheaply, and with a fraction of the GHG emissions.  And Canada is uniquely placed to benefit from a passenger-rail renaissance; one of the world’s largest passenger-rail manufacturers, Bombardier, is a Canadian company.

Air travel is increasing exponentially.  As I detailed in a previous blog post, air travelers now rack up about 7 trillion passenger-kilometres per year.  And that figure is projected to double by 2030.  If we are to retain a tolerable climate, most of the planes will soon need to be grounded, excepting perhaps those used for trans-oceanic flights.

While airplanes may remain our best option for crossing oceans, within continents higher-speed rail (130–200 km/h) and high-speed rail (200+ km/h) can move people faster and more comfortably.  Such trains can transport passengers from city-centre to city-centre, eliminating the long drive to the airport.  Trains do not require time-consuming, invasive airport security screenings.  These factors, combined with high speeds, mean that for many trips, the total travel time is lower for trains than for planes.  And because trains have much more leg-room and often include observation cars, restaurants, and lounges, they are much more comfortable and enjoyable.

Many people will know the Eurostar high-speed line that connects Paris and other European cities to London via the Channel Tunnel.  Top speed for that train is 320 km/h.  A trip from downtown London to Downtown Paris—nearly 500 kms—takes 2 hours and 20 minutes, about the time it takes the average North American to drive to the airport, check in, check baggage, clear security, and get to his or her airplane seat.

China recently inaugurated its Shanghai Maglev line, with a maximum speed of 430km/h and average speed of 250 km/h.  Japan’s famous “bullet trains” went into service more than 50 years ago.  They now travel on a network of 2,764 kms of track and reach speeds of 320 km/h.

North America has one high-speed line, the Acela Express that links Boston, New York, Philadelphia, Baltimore, and Washington. The maximum speed is 240 km/h, through average speeds are lower.  Travel time from New York to Washington is 2 hours and 45 minutes, including time spent at intermediate stops: an average speed of 132 km/h.  The Acela Express trains were built by a consortium 75 percent owned by Canada’s Bombardier.

This brings us to the truly good news: Canada is home to a world-leading passenger rail manufacturer, Bombardier.  You will find the company’s rolling stock in the subways of New York, London, and more than a dozen other cities.  Its intercity trains run throughout Europe, Asia, and North America.  And its high-speed trains are currently moving passengers in China, Europe, and the US.  Until a recent merger of two Chinese companies, Canada’s Bombardier was the largest passenger train manufacturer in the world.  Canada has a huge opportunity to create jobs and economic activity while leading the world in low-emission, cutting-edge rail technology.  As climate change forces Canada to scale back fossil-fuel production and maybe even auto manufacturing, Canada will need new economic engines.  Passenger-rail manufacturing can be an economic engine of the future.

Not all the news is good, however.  Many will have recent heard news reports about Bombardier.  Over the past few years, Federal and provincial governments have provided cash injections to the company totaling more than a billion dollars, largely to cover costs on its C-Series passenger-jet program.  Bombardier is in trouble.  Indeed, it may have made one of the biggest business blunders in recent decades: financially imperiling a world-leading train maker to make a huge gamble on planes just as climate change forces us to ground the planes and build a trillion-dollar passenger rail system.  Bombardier has recently announced that it may merge its train division with the German company Siemens.

Bombardier has been foolish.  Canadian citizens and their governments have been equally foolish: handing over billions of taxpayer dollars and not receiving a single passenger train in return.  But we can be smart.  That means building a North American network of fast trains.  Bombardier can prosper by being one of the main suppliers for that network.  High-speed passenger rail can be a win-win-win: jobs for Canadians and Americans; fast, comfortable travel; and a high-tech, low-emission transportation system on this continent like the ones being built in Europe and Asia.

The graph at the top of this article shows average per-person passenger-train utilization.  The data is from the most recent year available: 2014 or ’15.  Passenger rail utilization rates in Canada and the US (an average of less than 40 kms per person per year) are among the lowest in the world.  In China, average use is more than 800 kms per person per year and rising very rapidly.  In many European nations, it is more than 1,000 kms per year per person—25 to 30 times the Canadian and US rates.  There is huge growth potential for the passenger rail sector in North America.

Graph sources: OECD.