China will save us?  50+ years of data on Chinese energy consumption

Graph of Chinese energy consumption by source or fuel, 1965 to 2016
Chinese energy consumption, by source or fuel, 1965 to 2016

There’s a lot being written about China’s rapid push to install solar panels and wind turbines (e.g., see here).  And as the US withdraws from the Paris Agreement, pundits have suggested that this opens the door for Chinese leadership on renewable energy and climate change mitigation (see here).  And China certainly has taken over global production of solar photovoltaic (PV) panels.  But is this talk of China’s low-carbon, renewable-energy future premature and overoptimistic?  Are we just pretending, because so little positive is happening where we live, that something good is happening somewhere?  Chinese energy consumption data provides a corrective to the flood of uncritical news stories that imply that China will save us.

This week’s graph shows how various energy sources are being combined to power China’s rapidly growing and industrializing economy.  The units are “billions of barrels of oil equivalent”: all energy sources have been recorded based on their energy content relative to the energy contained in a barrel of oil.  Similar data for Canada can be found here.  US data is coming soon.

Is the Chinese energy system being rapidly decarbonized?  Is China powered by wind turbines?  Or by coal?  The data can support some optimism for the future, but at present, most of the news is bad.  China remains the world’s largest consumer of fossil fuels and largest emitter of greenhouse gases (GHGs).  Let’s look at the good-news-bad-news story that is China’s energy system.

First, the good news: As is visible in the graph, China’s fossil fuel consumption has been flat-lined since 2013, and coal consumption is falling.  Further, CO2 emissions have been declining since 2014.  China has ceased, or at least paused, its rapid increase in its consumption of fossil fuels.

China is also leading the world in the installation of renewable energy systems, especially wind and solar generation systems (see here).  Chinese wind power production and consumption is growing exponentially—doubling approximately every two years.  Solar power production and consumption is growing even more rapidly and has increased 25-fold in just the past 5 years.  China has also invested massively in hydro dams, which can produce electricity with far fewer GHG emissions than coal-fired power plants.

But it would be naive or premature to simple project Chinese solar and wind power growth rates into the future and conclude that the nation will soon slash its emissions.  China’s coal-fired powerplants are relatively new and unlikely to be decommissioned prematurely.  No matter how cheap solar panels become, installing new solar arrays will never be cheaper than simply continuing to produce electricity with already-built coal plants.

Moreover, the graph makes clear that the current contribution of solar and wind to China’s energy system is small—about 2 percent of total consumption.  And while this portion will undoubtedly grow, there will be huge challenges for China as renewables make up a larger and larger percentage of its electricity generation capacity.  With a less-than-state-of-the-art power grid, China will face difficulties dealing with the fluctuations and uncertainty created by intermittent power sources such as wind and solar power.

Is China the leader we’re looking for?  If so, it is a very odd choice.  China has doubled its fossil fuel use and emissions since 2003.  It is the world’s largest fossil fuel consumer and GHG emitter, and these two facts will almost certainly remain true for decades to come.  The idea that China will pick up the slack as American and European commitments to decarbonization falter is dangerous wishful thinking.  Moreover, it should not be the case that we should expect China to lead.  It was us—the UK, US, EU, Canada and similar early-adopters of fossil fuels, cars, and consumerism—that overfilled the atmosphere with GHGs over the past century.  China has come late to the fossil fuel party.  Asking it to lead the way out the door—asking it to take the lead in decarbonization—is as inappropriate as it is naive.

Here’s one last reason why it’s wrong to look for China to lead the way to a zero-carbon future: Per person, China’s emissions are about half of those in Canada and the US (source here).  Is it right for those of us neck deep in high-emission consumerist car-culture to look to relatively poor people with relatively low emissions and urge them to “go first” down the road of carbon reduction?

 

Powering Canada: 51 years of Canadian energy use data

Graph of Canadian energy use, by fuel or energy source, 1965 to 2016.
Canadian energy use (primary energy consumption), by fuel or energy source, 1965 to 2016.

New reports in highly-respected journals Science and Nature (links here and here) tell us that the world’s economies and societies need to reduce carbon-dioxide emissions to zero before mid-century.  This has huge implications for the ways in which we power our cities, homes, food systems, transportation networks, and manufacturing plants.  Our civilization must undergo a rapid energy-system transformation, similar in magnitude and effects to previous energy transitions, such as the replacement of wood by fossil fuels in the 18th, 19th, and 20th centuries.  Enormous changes are on the way.

To understand our possible futures it is useful to know something of the past.  The graph above shows Canadian primary energy consumption from 1965 to 2016.  The units are “millions of barrels of oil equivalent”—that is, all energy sources have been quantified based on their energy content relative to the energy contained in a barrel of oil.  (“Primary energy” is energy in the form in which it is first produced: oil from a well, coal from a mine, hydroelectricity from a dam, or photovoltaic electricity from a solar panel.  Much of the coal and some of the natural gas listed in the graph above is turned into electricity in power generating stations.)

This multi-decade look at Canadian energy use reveals both good and bad news.  Most obvious, it shows that Canada has nearly tripled its overall energy consumption since 1965.  Today, on a per-capita basis, Canadians consume more energy than citizens of most other nations.  Our very high per-capita energy use will make our energy transition more difficult and costly.

On the positive side, our rate of increase in energy use is slowing—the top line of the graph is flattening out.  Partly, this indicates that Canadians are using energy more wisely and efficiently.  But another factor may be the transfer of heavy industry and manufacturing to other nations; Canadian energy use may be growing more slowly because more of our industrial and consumer goods are made overseas.  Also, the graph may not include the full extent of energy consumed in international shipping and aviation.  If Canada’s full share of global water and air transport were added, our energy use may appear higher still.

The graph has some good news in that fossil fuel use in Canada is declining.  Coal, oil, and natural gas provide less energy to our economy today than they did 20 years ago.  Coal use, especially, has been cut.  On the negative side, any downward trendline in fossil fuel use is not nearly steep enough to intersect zero by 2050.

Good news is that Canada already has a large number of low-emission energy sources in place.  We are the world’s third-largest producer of hydro-electricity.  We also produce significant amounts of electricity from nuclear powerplants.  Starting in the 1980s and continuing today, Canada has produced about a third of its primary energy from low-emission sources: including nuclear, hydro, wind, and solar electricity generation.

This brings us to perhaps the most important fact revealed by the graph: the very slow rate of installation of new low-emission energy sources—especially solar and wind.  Today, solar and wind provide just 2 percent of our primary energy.  Indeed, the contribution of solar power is barely visible in the graph.

An energy transformation is critical.  Global greenhouse gas emissions must peak before 2020 and ramp down sharply, reaching zero three decades later.  This will be, by far, the most rapid energy transition in human history.  Canadian action so far falls far short of the scale and rate required.

P.S. A new book on the history of Canadian energy systems has recently been published.  Powering up Canada: A History of Power, Fuel, and Energy from 1600 contains chapters on the energy sources for the fur trade, early horse-powered agriculture, the rise in the importance of coal in Canada, and chapter on the development of the oil and gas sectors.

Graph sources: BP Statistical Review of World Energy.

 

2016: record high fossil fuel use (!) and stagnating solar power installations (?)

Graph of Primary energy consumption, by fuel or source, global, 2013-2016.
Primary energy consumption, by fuel or source, global, 2013-2016.

There are many kinds of climate change denial.  A minority of people deny that climate change is occurring or serious.  This is classic denial.  But a much more common and insidious form is all around us: accepting that the problem is real, but pretending that solutions are at hand, underway, or not very difficult.  By pretending that Elon Musk’s solar shingles or whiz-bang batteries can provide easy solutions, these people essentially deny the need for rapid, aggressive action.  They are wrong.  We are not solving the climate change problem.  At worst, record high rates of fossil fuel use are locking us into civilization-threatening levels of warming.  At best, we are proceeding toward solutions, but far too slowly.   What we must stop denying is the need for rapid, aggressive, transformative action.

Each year British Petroleum (BP) releases a report and dataset detailing global energy supply and demand.  The data includes each nation’s production and consumption of coal, oil, natural gas, hydroelectricity, and other energy sources.  Some data extends back to 1965.  BP provides one of the most important sources of energy information.  The company’s newest dataset—updated to include 2016—was released June 13th.  BP’s data shows that 2016 was another record-setting year for fossil fuel use: 11.4 billion tonnes of oil equivalent.  See graph above.  That same data shows that the rate of solar panel installation is slowing in nearly every nation.

The three graphs below are also produced from recently-updated BP data.  They show the amount of annual increase in the production and use of solar PV electricity in various countries.  This is approximately equal to the annual amount of new capacity added, but it further takes into account how much of any new capacity is actually being utilized.  The North American, Asian, and European nations featured in the graphs together host 92 percent of the world’s installed solar generation capacity.

The first of the three graphs shows how much solar PV production/ consumption increased each year in selected EU countries over the past 17 years.  It’s bad news: the rate of additions to solar power consumption peaked in 2012 and has fallen dramatically since then.  The graph shows that the rate at which EU countries are installing solar panel arrays has collapsed since 2012.  Progress toward renewables is decelerating.

Annual PV production and consumption additions, 2000 to 2013, EU countries

Further, note how each individual country accelerated its installation then slowed.  Spain, represented by the green bars, ramped up installation of solar panel arrays in 2008 and ’09.  After that, solar PV additions to Spain’s grid fell sharply, and rallied in only one year: 2012.  Germany’s solar installations followed a similar trajectory.  In that country, annual increases in solar power production and consumption grew until 2011, then began falling.  Additions to solar power production and consumption in Italy peaked in 2011 and have been falling ever since.  Nearly every EU nation is slowing the rate at which they add solar power.

The next graph shows production/consumption additions in the US and Canada.  The rates of new additions in those countries also appears to be sputtering.

Annual-PV-production-and-consumption-additions-2000-to-2013-North-America

The final graph shows the rate of production/consumption increases in China, India, Japan, and South Korea.  Clearly, capacity and consumption are rising rapidly in Asia.  But note that rates of installation are increasing only in China and perhaps in India.  One EU-based analyst told me that in recent years China ramped up solar-panel production to serve markets in the EU and elsewhere.  But when demand in those markets contracted, faced with a glut of panels coming out of Chinese factories, the government there pushed to install those panels in China.  Perhaps that isn’t the entire story.  It may be that China’s world-leading solar install rates are partly caused by a visionary concern for the environment and the climate, and partly by the need to absorb the output of Chinese PV panel factories left with surpluses after other nations failed to maintain installation rates.

Annual-PV-production-and-consumption-additions-2000-to-2013-Asia

Together, these four graphs tell a disturbing story.  Instead of accelerating rates of solar panel installations, we see stagnation or decline in nearly every nation other than China.  This comes along-side record-high fossil fuel use and record-setting CO2 emissions.  We’re failing to act aggressively enough to decarbonize global electricity systems and we are largely ignoring the project of decarbonizing our overall energy systems.  Rather, we’re increasing carbon emissions.  And as we do so, we risk slamming shut any window we may have had to keep global temperature increases under 2 degrees C.

Graph sources: BP Statistical Review of World Energy.

Happy motoring: Global automobile production 1900 to 2016

Graph of global automobile production numbers, various nations, historic, 1900 to 2016
Global automobile production (cars, trucks, and buses), 1900-2016

This week’s graph shows global automobile production over the past 116 years—since the industry’s inception.  The numbers include car, trucks, and buses.  The graph speaks for itself.  Nonetheless, a few observations may clarify our situation.

1.  Global automobile production is at a record high, increasing rapidly, and almost certain to rise far higher.

2. Annual production has nearly doubled since 1997—the year the world’s governments signed the Kyoto climate change agreement.

3. China is now the world’s largest automobile producer.  In terms of units made, Chinese production is double that of the United States.  This graph tells us something about the ascendancy of China.

4.  Most of the growth in the auto manufacturing sector is in Asia, especially Thailand, India, and China.  In 2000, those three nations together manufactured 3 million cars.  Last year their output totaled 34 million.  After 67 years of production, Australia is about to shut down its last automobile plant.  Most of its cars will be imported from Thailand, and perhaps a growing number  from China.

5. Auto production in “high-wage countries” is declining.  As noted, the Australian industry has been shuttered.  US production is down 5 percent since 2000, and Canadian production is down 20 percent.  Over that same period, production fell in France, Italy, and Japan, though not in Germany.  Since 2000, auto production increases in Mexico (+1.7 million) are roughly equal to decreases in Canada and the US (-1.2 million).

6. There are some surprises in the data:  Turkey, Slovakia, and Iran all make the  top-20 in terms of production numbers.

Graph sources: Motor Vehicle Manufacturers Association of the United States, World Motor Vehicle Data, 1981 Edition; Ward’s Communications, Ward’s World Motor Vehicle Data 2002; United States Department of Transportation, Bureau of Transportation Statistics, National Transportation Statistics, Table 1-23

Electric cars are coming…  Fast!

Graph of the number of electric vehicles worldwide and selected nations
Increase in the stock of electric vehicles: global and selected nations

When- and wherever it occurs, exponential growth is transformative.  After a long period of stagnation or slow increase, some important quantity begins doubling and redoubling.  The exponential growth in cloth, coal, and iron production transformed the world during the Industrial Revolution.  The exponential growth in the power and production volumes of transistors (see previous blog post)—a phenomenon codified as “Moore’s Law”—made possible the information revolution, the internet, and smartphones.  Electric cars and their battery systems have now entered a phase of exponential growth.

There are two categories of electric vehicles (EVs).  The first is plug-in hybrid electric vehicles (PHEVs).  These cars have batteries and can be driven a limited distance (usually tens of kilometres) using electrical power only, after which a conventional piston engine engages to charge the batteries or assist in propulsion.  Well-known PHEVs include the Chevrolet Volt and the Toyota Prius Plug-in.

The second category is the battery electric vehicle (BEV).  Compared to PHEVs, BEVs have larger batteries, longer all-electric range (150 to 400 kms), and no internal combustion engines.  Well-known BEVs include the Nissan Leaf, Chevrolet Bolt, and several models from Tesla.  The term electric vehicle (EV) encompasses both PHEVs and BEVs.

The graph above is reproduced from a very recent report from the International Energy Agency (IEA) entitled Global EV Outlook 2017.  It shows that the total number of electric vehicles in the world is increasing exponentially—doubling and redoubling every year or two.  In 2012, there we nearly a quarter-million EVs on streets and roads worldwide.  A year or two later, there were half-a-million.  By 2015 the number had surpassed one million.  And it is now well over two million.  Annual production of EVs is similarly increasing exponentially.  This kind of exponential growth promises to transform the global vehicle fleet.

But if it was just vehicle numbers and production volumes that were increasing exponentially this trend would not be very interesting or, in the end, very powerful.  More important, quantitative measures of EV technology and capacity are doubling and redoubling.  This second graph, below, taken from the same IEA report, shows the dramatic decrease in the cost of a unit of battery storage (the downward trending line) and the dramatic increase in the energy storage density of EV batteries (upward trending line).  If we compare 2016 to 2009, we find that today an EV battery of a given capacity costs one-third as much and is potentially one-quarter the size.  Stated another way, for about the same money, and packaged into about the same space, a current battery can drive an electric car three or four times as far.

Graph of electric vehicle battery cost and power density 2009 to 2016

Looking to the future, GM, Tesla, and the US Department of Energy all project that battery costs will decrease by half in the coming five years.  Though these energy density increases and cost decreases will undoubtedly plateau in coming decades, improvements underway now are rapidly moving EVs from the periphery to the mainstream.  EVs may soon eclipse internal-combustion-engine cars in all measures: emissions, purchase affordability, operating costs, performance, comfort, and even sales.

Source for graphs: International Energy Agency, Global EV Outlook 2017: Two Million and Counting

Complexity, energy, and the fate of our civilization

Tainter Collapse of Complex Societies book cover

Some concepts stay with you your whole life and shape the way you see the world.  For me, one such concept is complexity.  Thinking about the increasing complexity of our human-made systems gives a window into future energy needs, the rise and fall of economies, the structures of cities, and possibly even the fate of our global mega-civilization.

In 1988, Joseph Tainter wrote a groundbreaking book on complexity and civilizations: The Collapse of Complex Societies.  The book is a detailed historical and anthropological examination of the Roman, Mayan, Chacoan, and other civilizations.  As a whole, the book can be challenging.  But most of the important big-picture concepts are contained in chapters 4 and 6.

Regarding complexity, energy, and collapse, Tainter argues that:

1.  Human societies are problem-solving entities;
2.  Problem solving creates complexity: new hierarchies and control structures; increased reporting and information processing; more managers, accountants, and consultants;
3.  All human systems require energy, and increased complexity must be supported by increased energy use;
4.  Investment in problem-solving complexity reaches a point of declining marginal returns: (energy) costs rise faster than (social or economic) benefits; and
5.  Complexity rises to a point where available energy supplies become inadequate to support it and, in that state, an otherwise withstandable shock can cause a society to collapse.  For example, the western Roman Empire, unable to access enough bullion, grain, and other resources to support the complexity of its cities, armies, and far-flung holdings, succumbed to a series of otherwise unremarkable attacks by barbarians.

Societies certainly are problem-solving entities.  Our communities and nations encounter problems: external enemies, environmental threats, resource availability, disease, crime.  For these problems we create solutions: standing armies and advanced weaponry, environmental protection agencies, transnational energy and mining corporations, healthcare companies, police forces.

Problem-solving, however, entails costs in the form of complexity.  To solve problems we create ever-larger bureaucracies, new financial products, larger data processing networks, and a vast range of regulations, institutions, interconnections, structures, programs, products, and technologies.  We often solve problems by creating new managerial or bureaucratic roles (e.g., ombudsmen, human resources managers, or cyber-security specialist); creating new institutions (the UN or EU); or developing new technologies (smartphones, smart bombs, geoengineering, in vitro fertilization).  We accept or even demand this added complexity because we believe that there are benefits to solving problems.  And there certainly are, at least if we evaluate benefits on a case-by-case basis.  Taken as whole, however, the unrelenting accretion of complexity weighs on the system, bogs it down, increases energy requirements, and, as Tainter argues, eventually outstrips available energy supplies and sets the stage for collapse.  We should keep this in mind as we push to further increase the complexity of our civilization even as energy availability may be contracting.  Tainter is telling us that complexity has costs—costs that civilizations sometimes cannot bear.  This warning should ring in our ears as we consider the internet of things, smart-grids, globe-circling production chains, and satellite-controlled autonomous cars.  The costs of complexity must be paid in the currency of energy.

Complexity remains a powerful concept for understanding our civilization and its future even if we don’t share Tainter’s conclusion that increasing complexity sets the stage for collapse.  Because embedded in Tainter’s theory is an indisputable idea: greater complexity must be supported by larger energy inflows.  Because of their complexity, there simply cannot be low-energy versions of London, Japan, the EU, or the global trading system.  As economies grow and consumer choices proliferate and as we increase the complexity of societies here and around the world we necessarily increase energy requirements.

It is no longer possible to understand the world by watching money flows.  There are simply too many trillions of notional dollars, euros, and yen flitting through the global economy.  These torrents of e-money obscure what is really happening.  If we want to understand our civilization and its future, we must think about energy and material flows—about the physical structure and organization of our societies.  Complexity is a powerful analytical concept that enables us to do this.

Losing the farm(s): Census data on the number of farms in Canada

Graph of the number of farms in Canada, Census years, 1911 to 2016
Number of farms in Canada, Census years, 1911 to 2016

Statistics Canada conducts its Census of Agriculture every five years.  Data from the 2016 Census was just released.  It shows that the number of farms in Canada continues to decline at an alarming rate.

The graph above shows the number of farms operating in Canada in each of the Census years from 1911 to 2016.  Over the past 30 years—1986 to 2016—Canada lost one-third of its farm families.  A generation ago there were just under 300,000 farms in Canada; today there are just under 200,000.

The continuing loss of farms and farmers damages Canadian food security and food sovereignty, our capacity to produce local food, our ability to adapt to climate change, and our prospects for building environmentally sustainable food systems.  It also has negative effect on employment and rural economic development.

But there is another consideration, one that should interest every Canadian: the number of farms in Canada was reduced by one-third during a thirty-year period when taxpayer-funded transfers to farmers, in the form of farm-support programs, totaled more than 100 billion dollars.  (All figures are adjusted for inflation.)  The public policies and taxpayer dollars that Canadians understand as helping “save the family farm” are having no such effect.

This failure of farm-support programs to stabilize the number of farms can be traced to two factors.  First, such programs lack appropriate payment caps. Caps on total annual payments of $200,000 to $300,000 per farm could slow farm-size expansion and the attendant loss of farms.  But payments under AgriStability—Canada’s primary income stabilization and support program—are capped at $3 million per farm per year.

Second, our agricultural policies do nothing to challenge the pathology underlying the farm income crisis: wealth extraction by agribusiness.  As noted in a previous blog, over the past 30 years agribusiness has made off with 98 percent of farmers’ revenues.  From some perspectives, farm-support programs can be seen as fulfilling an enabling role: keeping farm families solvent so that powerful corporations can bleed off wealth.

This is not an argument against farm support payments—vital crop insurance and income-stabilization programs.  But it is a suggestion that farmers, citizens, and governments should all look critically at the real-world effects of these programs and the tens-of-billions of taxpayers’ dollars these programs consume.  All citizens have an interest in maximizing the number of farm families on the land.  By that measure, our agricultural policies and programs are failing miserably.  Canada’s family farms are disappearing.

Graph sources:  Statistics Canada, Census of Agriculture, various years; and F.H. Leacy, M.C. Urquhart, and K.A.H. Buckley, eds., Historical statistics of Canada (Ottawa: Statistics Canada and the Social Science Federation of Canada, 1983)

Our civilizational predicament: Doubling economic activity and energy use while cutting emissions by half

Graph of Global economic activity, energy use, and greenhouse gas emissions, 1CE to 2015CE.
Global economic activity, energy use, and carbon dioxide emissions, 1CE to 2015CE.

My friends sometimes suggest that I’m too pessimistic.  I’m not.  Rather, I’d suggest that everyone else is too optimistic.  Or, more precisely, I live in a society where people are discouraged from thinking rigorously about our predicament.  The graph above sets out our civilizational predicament, and it hints at the massive scale of the transformation that climate change requires us to accomplish in the coming decade or two.

The main point of the graph above is this: Long-term data shows that the size and speed of our global mega-civilization is precisely correlated with energy use, and energy use is precisely correlated with greenhouse gas emissions.  We have multiplied the size of our global economy and our living standards by using more energy, and this increased energy use has led us to emit more carbon dioxide and other greenhouse gases.

The graph plots three key civilizational metrics: economic activity, energy use, and carbon dioxide (CO2) emissions.  The graph covers the past 2015 years, the period from 1 CE (aka 1 AD) to 2015 CE.  The blue line depicts the size of the global economy.  The units are trillions of US dollars, adjusted for inflation.  The green diamond-shaped markers show global energy use, with all energy converted to a common measure: barrels of oil equivalent.  And the red circles show global CO2 emissions, in terms of tonnes of carbon.

Though it is seldom stated explicitly, most government and business leaders and most citizens are proceeding under the assumption that the economic growth line in the graph can continue to spike upward.  This will require the energy line to also climb skyward.  But our leaders are suggesting that the emissions line can be wrenched downward.  When people are “optimistic” about climate change, they are optimistic about doing something that has never been done before: maintaining the upward arc of the economic and energy trendlines, but somehow unhooking the emissions trendline and bending it downward, toward zero.  I worry that this will be very hard.  Most important, it will be impossibly hard unless we are realistic about what we are trying to do, and about the challenges and disruptions ahead.

We must not despair, but neither should we permit ourselves unfounded optimism.  There is a line from a great movie—the Cohen Brother’s “Miller’s Crossing”—in which the lead character, a gangster played by Gabriel Byrne, says “I’d worry a lot less if I thought you were worrying enough.”

Graph sources: GDP: Angus Maddison, The World Economy, Volume 1: A Millennial Perspective (Paris: Organization for Economic Co-operation and Development, 2001)

GHGs: Boden, T.A., Marland, G., and Andres R.J., “Global, Regional, and National Fossil-Fuel CO2 Emissions,” Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.

Energy consumption: Vaclav Smil, Energy in Nature and Society: General Energetics of Complex Systems (Cambridge, MA: The MIT Press, 2008); British Petroleum, BP Statistical Review of World Energy: June 2016 (London: British Petroleum, 2016); pre-1500 energy levels estimated by the author based on data in Smil.

Deindustrialization: Or, what are half-a-billion Canadians and Americans going to do for a living?

Graph of United States Gross Domestic Product, by sector, 1947 to 2016, highlighting deindustrialization
United States Gross Domestic Product, by sector, 1947 to 2016

Canada and the US continue to undergo rapid deindustrialization.  Our economies are increasingly service-based, and that should worry us.

The graph above looks complicated, but the key idea is contained in two trends.  And both are negative.  First, note the declining contribution manufacturing is making to United States (US) Gross Domestic Product (GDP).  The red, dotted line shows manufacturing’s percentage contribution.

Manufacturing now makes up just 12 percent of US GDP, and less than 10 percent in Canada.  The decline of manufacturing is even more evident when we look at employment rather than GDP.  According to the US Bureau of Labor Statistics, goods-producing industries (manufacturing, mining, construction, agriculture, etc.) now employ roughly 15 percent of America’s working population.  Nearly 85 percent are employed in the service sector.  The situation is similar in Canada.  According to Statistics Canada data , approximately 77 percent of Canadian workers are employed in the service sector, and this percentage continues to rise.  Both nations continue to deindustrialize.

Second, note the rise in the importance of three service sectors: 1. Finance, insurance, real estate, and rentals (the broad blue line); 2. Professional and business services (green line); and 3. Education and healthcare (red line). A US economy built upon General Motors, General Electric, and U.S. Steel has given way to one built upon JPMorgan Chase, Walmart, and UnitedHealth Group.

Note, especially, the blue line: finance and real estate.  With the 2008 financial crisis still fresh in our minds, and its effects still resonating through global economies, it should worry North Americans that banking and real estate have replaced manufacturing as the one of the largest economic sectors.

Manufacturing is declining, our energy sectors may have to contract as we deal with climate change, most North American fisheries have been depleted and agriculture seems to need fewer farmers and workers each year, low-wage nations continue to claim Canadian and American jobs, and we’re told that the robots are coming.  By mid-century there will be more than 450 million people living in Canada and the US.  Every politician in every party and every engaged citizen should be asking the same question: what are nearly half-a-billion North Americans going to do for a living?

We are not doomed to decline, but decline will be our lot unless we actively engage in a collective democratic effort to build a new, sustainable economy for North America.

Graph source: US Dept. of Commerce, Bureau of Economic Analysis

 

Far-flung food: local food falls victim to a fixation on food exports

A graph of Canadian agri-food exports and imports, 1970 to 2015
Canadian agri-food exports and imports, 1970 to 2015

The local food movement is important—a grassroots force for positive change.  People are increasingly aware of the benefits of eating local food and more are demanding it.  That said, it would be wrong to think that we are localizing our food system.  Just the opposite.  The most powerful players are putting their money and influence behind the project of globalizing and de-localizing our food supply.  Our food has never been less local.

In early-April, Canada’s federal government announced an ambitious new target for higher agri-food exports: $75 billion by 2025.  Unfortunately, as exports increase, so will imports.   We’re maximizing food miles.

The graph above shows Canadian agri-food exports and imports.  The units are billions of dollars, adjusted for inflation.  The graph covers 1970 to 2015.  A round circle highlights 1989, which marks the beginning of the modern “free trade” period.  In 1989, we implemented the historic Canada-US Free Trade Agreement (CUSTA).  Not long after, we implemented the North American Free Trade Agreement (NAFTA), and the World Trade Organization (WTO) Agreement on Agriculture.  Other agreements have followed.

Since ’89, Canada has been very successful in finding export markets for Canadian grains, meat, processed foods, and other agri-food products.  Exports have more than tripled.  This is no chance occurrence.  Governments and industry have worked together to drive up exports—repeatedly setting and meeting ever-higher targets.  In 1993, for example, federal and provincial governments pledged to double agri-food exports to $20 billion by 2000. Next, they pledged to double exports again: to $40 billion by 2005.  (This latter goal was actually suggested by the Canadian Agri-Food Marketing Council, an industry group that included representatives of Cargill, Maple Leaf, and McCains.)  Just last year, the Canadian Agri-Food Trade Alliance—whose members include some of the world’s largest agricultural traders and processors—voiced strong support for new trade agreements: the Comprehensive Economic and Trade Agreement (CETA) and the Trans-Pacific Partnership (TPP).  To support of this industry-led effort, the federal government has now pledged to help increase exports to $75 billion.  While many citizens want local food, governments and agribusiness appear to want the opposite.

The trade agreements that pave the way for Canadian exports do the same for imports.  Since 1989, Canadian food imports have more than tripled, to nearly $45 billion per year.  With each uptick in exports comes a comparable increase in imports.  If we reach our 2025 goal of $75 billion in exports, the trendlines in the graph above suggest that imports will rise to about $65 billion per year—on average, about $8,000 for a hypothetical family of four.  That’s a lot of imported food. Especially in a food-rich nation such as Canada.

The preceding is not an argument against exports and trade, or even against food imports.  But it is an argument against a simplistic fixation on exports.  While exports have doubled and redoubled, farmers’ net incomes have stagnated or fallen, the number of Canadian farms has been reduced by a third, farm debt has quadrupled, many Canadian processing companies have disappeared, and our agricultural and food systems have become increasingly controlled by foreign corporations.  Good agricultural policy must go far beyond a push to produce and export.  And a sound national food policy must go far, far beyond such simplistic schemes.

Graph sources: Agriculture and Agri-Food Canada (AAFC): “Agri-food Export Potential for the year 2000;” and data from AAFC by request.