Complexity, energy, and the fate of our civilization

Tainter Collapse of Complex Societies book cover

Some concepts stay with you your whole life and shape the way you see the world.  For me, one such concept is complexity.  Thinking about the increasing complexity of our human-made systems gives a window into future energy needs, the rise and fall of economies, the structures of cities, and possibly even the fate of our global mega-civilization.

In 1988, Joseph Tainter wrote a groundbreaking book on complexity and civilizations: The Collapse of Complex Societies.  The book is a detailed historical and anthropological examination of the Roman, Mayan, Chacoan, and other civilizations.  As a whole, the book can be challenging.  But most of the important big-picture concepts are contained in chapters 4 and 6.

Regarding complexity, energy, and collapse, Tainter argues that:

1.  Human societies are problem-solving entities;
2.  Problem solving creates complexity: new hierarchies and control structures; increased reporting and information processing; more managers, accountants, and consultants;
3.  All human systems require energy, and increased complexity must be supported by increased energy use;
4.  Investment in problem-solving complexity reaches a point of declining marginal returns: (energy) costs rise faster than (social or economic) benefits; and
5.  Complexity rises to a point where available energy supplies become inadequate to support it and, in that state, an otherwise withstandable shock can cause a society to collapse.  For example, the western Roman Empire, unable to access enough bullion, grain, and other resources to support the complexity of its cities, armies, and far-flung holdings, succumbed to a series of otherwise unremarkable attacks by barbarians.

Societies certainly are problem-solving entities.  Our communities and nations encounter problems: external enemies, environmental threats, resource availability, disease, crime.  For these problems we create solutions: standing armies and advanced weaponry, environmental protection agencies, transnational energy and mining corporations, healthcare companies, police forces.

Problem-solving, however, entails costs in the form of complexity.  To solve problems we create ever-larger bureaucracies, new financial products, larger data processing networks, and a vast range of regulations, institutions, interconnections, structures, programs, products, and technologies.  We often solve problems by creating new managerial or bureaucratic roles (e.g., ombudsmen, human resources managers, or cyber-security specialist); creating new institutions (the UN or EU); or developing new technologies (smartphones, smart bombs, geoengineering, in vitro fertilization).  We accept or even demand this added complexity because we believe that there are benefits to solving problems.  And there certainly are, at least if we evaluate benefits on a case-by-case basis.  Taken as whole, however, the unrelenting accretion of complexity weighs on the system, bogs it down, increases energy requirements, and, as Tainter argues, eventually outstrips available energy supplies and sets the stage for collapse.  We should keep this in mind as we push to further increase the complexity of our civilization even as energy availability may be contracting.  Tainter is telling us that complexity has costs—costs that civilizations sometimes cannot bear.  This warning should ring in our ears as we consider the internet of things, smart-grids, globe-circling production chains, and satellite-controlled autonomous cars.  The costs of complexity must be paid in the currency of energy.

Complexity remains a powerful concept for understanding our civilization and its future even if we don’t share Tainter’s conclusion that increasing complexity sets the stage for collapse.  Because embedded in Tainter’s theory is an indisputable idea: greater complexity must be supported by larger energy inflows.  Because of their complexity, there simply cannot be low-energy versions of London, Japan, the EU, or the global trading system.  As economies grow and consumer choices proliferate and as we increase the complexity of societies here and around the world we necessarily increase energy requirements.

It is no longer possible to understand the world by watching money flows.  There are simply too many trillions of notional dollars, euros, and yen flitting through the global economy.  These torrents of e-money obscure what is really happening.  If we want to understand our civilization and its future, we must think about energy and material flows—about the physical structure and organization of our societies.  Complexity is a powerful analytical concept that enables us to do this.

Losing the farm(s): Census data on the number of farms in Canada

Graph of the number of farms in Canada, Census years, 1911 to 2016
Number of farms in Canada, Census years, 1911 to 2016

Statistics Canada conducts its Census of Agriculture every five years.  Data from the 2016 Census was just released.  It shows that the number of farms in Canada continues to decline at an alarming rate.

The graph above shows the number of farms operating in Canada in each of the Census years from 1911 to 2016.  Over the past 30 years—1986 to 2016—Canada lost one-third of its farm families.  A generation ago there were just under 300,000 farms in Canada; today there are just under 200,000.

The continuing loss of farms and farmers damages Canadian food security and food sovereignty, our capacity to produce local food, our ability to adapt to climate change, and our prospects for building environmentally sustainable food systems.  It also has negative effect on employment and rural economic development.

But there is another consideration, one that should interest every Canadian: the number of farms in Canada was reduced by one-third during a thirty-year period when taxpayer-funded transfers to farmers, in the form of farm-support programs, totaled more than 100 billion dollars.  (All figures are adjusted for inflation.)  The public policies and taxpayer dollars that Canadians understand as helping “save the family farm” are having no such effect.

This failure of farm-support programs to stabilize the number of farms can be traced to two factors.  First, such programs lack appropriate payment caps. Caps on total annual payments of $200,000 to $300,000 per farm could slow farm-size expansion and the attendant loss of farms.  But payments under AgriStability—Canada’s primary income stabilization and support program—are capped at $3 million per farm per year.

Second, our agricultural policies do nothing to challenge the pathology underlying the farm income crisis: wealth extraction by agribusiness.  As noted in a previous blog, over the past 30 years agribusiness has made off with 98 percent of farmers’ revenues.  From some perspectives, farm-support programs can be seen as fulfilling an enabling role: keeping farm families solvent so that powerful corporations can bleed off wealth.

This is not an argument against farm support payments—vital crop insurance and income-stabilization programs.  But it is a suggestion that farmers, citizens, and governments should all look critically at the real-world effects of these programs and the tens-of-billions of taxpayers’ dollars these programs consume.  All citizens have an interest in maximizing the number of farm families on the land.  By that measure, our agricultural policies and programs are failing miserably.  Canada’s family farms are disappearing.

Graph sources:  Statistics Canada, Census of Agriculture, various years; and F.H. Leacy, M.C. Urquhart, and K.A.H. Buckley, eds., Historical statistics of Canada (Ottawa: Statistics Canada and the Social Science Federation of Canada, 1983)

Our civilizational predicament: Doubling economic activity and energy use while cutting emissions by half

Graph of Global economic activity, energy use, and greenhouse gas emissions, 1CE to 2015CE.
Global economic activity, energy use, and carbon dioxide emissions, 1CE to 2015CE.

My friends sometimes suggest that I’m too pessimistic.  I’m not.  Rather, I’d suggest that everyone else is too optimistic.  Or, more precisely, I live in a society where people are discouraged from thinking rigorously about our predicament.  The graph above sets out our civilizational predicament, and it hints at the massive scale of the transformation that climate change requires us to accomplish in the coming decade or two.

The main point of the graph above is this: Long-term data shows that the size and speed of our global mega-civilization is precisely correlated with energy use, and energy use is precisely correlated with greenhouse gas emissions.  We have multiplied the size of our global economy and our living standards by using more energy, and this increased energy use has led us to emit more carbon dioxide and other greenhouse gases.

The graph plots three key civilizational metrics: economic activity, energy use, and carbon dioxide (CO2) emissions.  The graph covers the past 2015 years, the period from 1 CE (aka 1 AD) to 2015 CE.  The blue line depicts the size of the global economy.  The units are trillions of US dollars, adjusted for inflation.  The green diamond-shaped markers show global energy use, with all energy converted to a common measure: barrels of oil equivalent.  And the red circles show global CO2 emissions, in terms of tonnes of carbon.

Though it is seldom stated explicitly, most government and business leaders and most citizens are proceeding under the assumption that the economic growth line in the graph can continue to spike upward.  This will require the energy line to also climb skyward.  But our leaders are suggesting that the emissions line can be wrenched downward.  When people are “optimistic” about climate change, they are optimistic about doing something that has never been done before: maintaining the upward arc of the economic and energy trendlines, but somehow unhooking the emissions trendline and bending it downward, toward zero.  I worry that this will be very hard.  Most important, it will be impossibly hard unless we are realistic about what we are trying to do, and about the challenges and disruptions ahead.

We must not despair, but neither should we permit ourselves unfounded optimism.  There is a line from a great movie—the Cohen Brother’s “Miller’s Crossing”—in which the lead character, a gangster played by Gabriel Byrne, says “I’d worry a lot less if I thought you were worrying enough.”

Graph sources: GDP: Angus Maddison, The World Economy, Volume 1: A Millennial Perspective (Paris: Organization for Economic Co-operation and Development, 2001)

GHGs: Boden, T.A., Marland, G., and Andres R.J., “Global, Regional, and National Fossil-Fuel CO2 Emissions,” Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.

Energy consumption: Vaclav Smil, Energy in Nature and Society: General Energetics of Complex Systems (Cambridge, MA: The MIT Press, 2008); British Petroleum, BP Statistical Review of World Energy: June 2016 (London: British Petroleum, 2016); pre-1500 energy levels estimated by the author based on data in Smil.

Deindustrialization: Or, what are half-a-billion Canadians and Americans going to do for a living?

Graph of United States Gross Domestic Product, by sector, 1947 to 2016, highlighting deindustrialization
United States Gross Domestic Product, by sector, 1947 to 2016

Canada and the US continue to undergo rapid deindustrialization.  Our economies are increasingly service-based, and that should worry us.

The graph above looks complicated, but the key idea is contained in two trends.  And both are negative.  First, note the declining contribution manufacturing is making to United States (US) Gross Domestic Product (GDP).  The red, dotted line shows manufacturing’s percentage contribution.

Manufacturing now makes up just 12 percent of US GDP, and less than 10 percent in Canada.  The decline of manufacturing is even more evident when we look at employment rather than GDP.  According to the US Bureau of Labor Statistics, goods-producing industries (manufacturing, mining, construction, agriculture, etc.) now employ roughly 15 percent of America’s working population.  Nearly 85 percent are employed in the service sector.  The situation is similar in Canada.  According to Statistics Canada data , approximately 77 percent of Canadian workers are employed in the service sector, and this percentage continues to rise.  Both nations continue to deindustrialize.

Second, note the rise in the importance of three service sectors: 1. Finance, insurance, real estate, and rentals (the broad blue line); 2. Professional and business services (green line); and 3. Education and healthcare (red line). A US economy built upon General Motors, General Electric, and U.S. Steel has given way to one built upon JPMorgan Chase, Walmart, and UnitedHealth Group.

Note, especially, the blue line: finance and real estate.  With the 2008 financial crisis still fresh in our minds, and its effects still resonating through global economies, it should worry North Americans that banking and real estate have replaced manufacturing as the one of the largest economic sectors.

Manufacturing is declining, our energy sectors may have to contract as we deal with climate change, most North American fisheries have been depleted and agriculture seems to need fewer farmers and workers each year, low-wage nations continue to claim Canadian and American jobs, and we’re told that the robots are coming.  By mid-century there will be more than 450 million people living in Canada and the US.  Every politician in every party and every engaged citizen should be asking the same question: what are nearly half-a-billion North Americans going to do for a living?

We are not doomed to decline, but decline will be our lot unless we actively engage in a collective democratic effort to build a new, sustainable economy for North America.

Graph source: US Dept. of Commerce, Bureau of Economic Analysis