Far-flung food: local food falls victim to a fixation on food exports

A graph of Canadian agri-food exports and imports, 1970 to 2015
Canadian agri-food exports and imports, 1970 to 2015

The local food movement is important—a grassroots force for positive change.  People are increasingly aware of the benefits of eating local food and more are demanding it.  That said, it would be wrong to think that we are localizing our food system.  Just the opposite.  The most powerful players are putting their money and influence behind the project of globalizing and de-localizing our food supply.  Our food has never been less local.

In early-April, Canada’s federal government announced an ambitious new target for higher agri-food exports: $75 billion by 2025.  Unfortunately, as exports increase, so will imports.   We’re maximizing food miles.

The graph above shows Canadian agri-food exports and imports.  The units are billions of dollars, adjusted for inflation.  The graph covers 1970 to 2015.  A round circle highlights 1989, which marks the beginning of the modern “free trade” period.  In 1989, we implemented the historic Canada-US Free Trade Agreement (CUSTA).  Not long after, we implemented the North American Free Trade Agreement (NAFTA), and the World Trade Organization (WTO) Agreement on Agriculture.  Other agreements have followed.

Since ’89, Canada has been very successful in finding export markets for Canadian grains, meat, processed foods, and other agri-food products.  Exports have more than tripled.  This is no chance occurrence.  Governments and industry have worked together to drive up exports—repeatedly setting and meeting ever-higher targets.  In 1993, for example, federal and provincial governments pledged to double agri-food exports to $20 billion by 2000. Next, they pledged to double exports again: to $40 billion by 2005.  (This latter goal was actually suggested by the Canadian Agri-Food Marketing Council, an industry group that included representatives of Cargill, Maple Leaf, and McCains.)  Just last year, the Canadian Agri-Food Trade Alliance—whose members include some of the world’s largest agricultural traders and processors—voiced strong support for new trade agreements: the Comprehensive Economic and Trade Agreement (CETA) and the Trans-Pacific Partnership (TPP).  To support of this industry-led effort, the federal government has now pledged to help increase exports to $75 billion.  While many citizens want local food, governments and agribusiness appear to want the opposite.

The trade agreements that pave the way for Canadian exports do the same for imports.  Since 1989, Canadian food imports have more than tripled, to nearly $45 billion per year.  With each uptick in exports comes a comparable increase in imports.  If we reach our 2025 goal of $75 billion in exports, the trendlines in the graph above suggest that imports will rise to about $65 billion per year—on average, about $8,000 for a hypothetical family of four.  That’s a lot of imported food. Especially in a food-rich nation such as Canada.

The preceding is not an argument against exports and trade, or even against food imports.  But it is an argument against a simplistic fixation on exports.  While exports have doubled and redoubled, farmers’ net incomes have stagnated or fallen, the number of Canadian farms has been reduced by a third, farm debt has quadrupled, many Canadian processing companies have disappeared, and our agricultural and food systems have become increasingly controlled by foreign corporations.  Good agricultural policy must go far beyond a push to produce and export.  And a sound national food policy must go far, far beyond such simplistic schemes.

Graph sources: Agriculture and Agri-Food Canada (AAFC): “Agri-food Export Potential for the year 2000;” and data from AAFC by request.

Back on track: North America needs high-speed passenger rail

A graph of passenger rail utilization, selected nations, average kilometres per capita
Passenger train use, kilometers per person per year (average), selected countries, 2014 or 2015 data

Not every problem has a clear solution.  Here’s one that does.  The problem is the exponential growth in air travel and attendant greenhouse gas (GHG) emissions.  The solution is high-speed passenger rail.

Compared to airplanes, high-speed trains can move people faster, more comfortably and conveniently, more cheaply, and with a fraction of the GHG emissions.  And Canada is uniquely placed to benefit from a passenger-rail renaissance; one of the world’s largest passenger-rail manufacturers, Bombardier, is a Canadian company.

Air travel is increasing exponentially.  As I detailed in a previous blog post, air travelers now rack up about 7 trillion passenger-kilometres per year.  And that figure is projected to double by 2030.  If we are to retain a tolerable climate, most of the planes will soon need to be grounded, excepting perhaps those used for trans-oceanic flights.

While airplanes may remain our best option for crossing oceans, within continents higher-speed rail (130–200 km/h) and high-speed rail (200+ km/h) can move people faster and more comfortably.  Such trains can transport passengers from city-centre to city-centre, eliminating the long drive to the airport.  Trains do not require time-consuming, invasive airport security screenings.  These factors, combined with high speeds, mean that for many trips, the total travel time is lower for trains than for planes.  And because trains have much more leg-room and often include observation cars, restaurants, and lounges, they are much more comfortable and enjoyable.

Many people will know the Eurostar high-speed line that connects Paris and other European cities to London via the Channel Tunnel.  Top speed for that train is 320 km/h.  A trip from downtown London to Downtown Paris—nearly 500 kms—takes 2 hours and 20 minutes, about the time it takes the average North American to drive to the airport, check in, check baggage, clear security, and get to his or her airplane seat.

China recently inaugurated its Shanghai Maglev line, with a maximum speed of 430km/h and average speed of 250 km/h.  Japan’s famous “bullet trains” went into service more than 50 years ago.  They now travel on a network of 2,764 kms of track and reach speeds of 320 km/h.

North America has one high-speed line, the Acela Express that links Boston, New York, Philadelphia, Baltimore, and Washington. The maximum speed is 240 km/h, through average speeds are lower.  Travel time from New York to Washington is 2 hours and 45 minutes, including time spent at intermediate stops: an average speed of 132 km/h.  The Acela Express trains were built by a consortium 75 percent owned by Canada’s Bombardier.

This brings us to the truly good news: Canada is home to a world-leading passenger rail manufacturer, Bombardier.  You will find the company’s rolling stock in the subways of New York, London, and more than a dozen other cities.  Its intercity trains run throughout Europe, Asia, and North America.  And its high-speed trains are currently moving passengers in China, Europe, and the US.  Until a recent merger of two Chinese companies, Canada’s Bombardier was the largest passenger train manufacturer in the world.  Canada has a huge opportunity to create jobs and economic activity while leading the world in low-emission, cutting-edge rail technology.  As climate change forces Canada to scale back fossil-fuel production and maybe even auto manufacturing, Canada will need new economic engines.  Passenger-rail manufacturing can be an economic engine of the future.

Not all the news is good, however.  Many will have recent heard news reports about Bombardier.  Over the past few years, Federal and provincial governments have provided cash injections to the company totaling more than a billion dollars, largely to cover costs on its C-Series passenger-jet program.  Bombardier is in trouble.  Indeed, it may have made one of the biggest business blunders in recent decades: financially imperiling a world-leading train maker to make a huge gamble on planes just as climate change forces us to ground the planes and build a trillion-dollar passenger rail system.  Bombardier has recently announced that it may merge its train division with the German company Siemens.

Bombardier has been foolish.  Canadian citizens and their governments have been equally foolish: handing over billions of taxpayer dollars and not receiving a single passenger train in return.  But we can be smart.  That means building a North American network of fast trains.  Bombardier can prosper by being one of the main suppliers for that network.  High-speed passenger rail can be a win-win-win: jobs for Canadians and Americans; fast, comfortable travel; and a high-tech, low-emission transportation system on this continent like the ones being built in Europe and Asia.

The graph at the top of this article shows average per-person passenger-train utilization.  The data is from the most recent year available: 2014 or ’15.  Passenger rail utilization rates in Canada and the US (an average of less than 40 kms per person per year) are among the lowest in the world.  In China, average use is more than 800 kms per person per year and rising very rapidly.  In many European nations, it is more than 1,000 kms per year per person—25 to 30 times the Canadian and US rates.  There is huge growth potential for the passenger rail sector in North America.

Graph sources: OECD.

 

Fractal collapse: How the dominant societies and economies may fail.

Six images showing the stages of formation of a Sierpinski triangle
The stages of formation of a Sierpinski triangle illustrating fractal collapse

Fractal collapse is an important, useful idea.  It helps us understand that a society, economy, political system, or civilization may not “fall,” but rather become pock-marked and weakened—shot through with micro-collapses.

The United States may be in an advanced state of collapse.  There are many indicators that this is the case.  The national debt, nearly $20 trillion, about a quarter-million dollars per family of four (see my “US national debt per family”), seems unrepayable.  America’s former industrial heartland is now mostly rustbelt, and parts of Detroit look like sets for “Walking Dead” or “The Road.”  Climate change is bearing down from one side and resource depletion from another.  Its democratic system—rotted by dark money, voter suppression, gerrymandering, the distortions of the Electoral College, and messianic populist politics—has delivered gridlock, ideologues, cartoon-level analyses of complex issues, and, now, Trump.  Many of the manufacturing jobs that have not moved to Asia may soon be taken by robots.  Inequality and incarceration-rates are at record highs.  One could extend this list to fill pages.

Despite the preceding, I’m not predicting that America (or Greece or Australia or England) will “fall”—pitch into rapid and irreversible economic contraction and social disintegration.  Instead, fractal collapse is more likely.  In fractal collapse, parts of a system fail, at various scales, but the system, in diminished form, carries on.  We’re seeing this in America.  We see the collapse of a household here (perhaps a result of the opioid crisis), and a neighbourhood, there; a city declines rapidly (think Detroit or Scranton) and a county declares bankruptcy.  Collapse occurs in various places and at various scales but the aggregate entity moves forward.  And such collapses are not predictable—they do not just happen to poor people or in the “poor” places.  Suddenly and unexpectedly, the investment banks collapse, then General Motors becomes insolvent.  The Senate and House of Representatives cease to function properly.  Collapse is not a single event.  As we are seeing it play out now—amid the hyper-energized and dominant “industrial” economies—collapse is multiple, iterative, and repeated across scales: it is fractal.

And collapse is not monolithic or pervasive.  Indeed, some parts of the system expand and prosper.  The US is manufacturing billionaires at a record pace, the stock market continues to climb, output of everything from corn to natural gas is up, and Google and Apple are world-leading corporations.  A hallmark of collapse is that societies become dis-integrated, allowing some parts to fall as other parts rise.

The image above is a Sierpinski triangle or “gasket.”  It helps visualize this idea of fractal collapse.  Step by step, the original triangle shape develops more holes and loses area, but it does not disappear.  its outlines remain apparent.

To make a Sierpinski gasket, we start with an equilateral triangle.  Then we identify the mid-points of each side and use these as the vertices of a new triangle, which we remove from the original.  (See the top-middle triangle, above.)  This leaves us with three equilateral triangles.  We repeat this process over and over; we iterate.  From each remaining triangle we remove the middle, leaving three smaller triangles.  The Sierpinski gasket and its repeated holing can serve as a visual metaphor for the fractal collapse that may now be hollowing out many of the world’s nations.

The future is not binary, not rise or fall.  Increasingly, nations may become less homogeneous.  Some parts may expand and prosper while other parts may wither or fail.  The overall trendline may not be upward, however, but rather downward.  Our future may not be a train wreck, but rather a slow dilapidation.  Not with a bang but a wimper.  We can change this outcome.  But currently very few are trying.

The intellectual history of the idea of fractal collapse is not wholly clear.  The concept came out of the physical sciences and has been popularized as a description of social and economic collapse by author and analyst John Michael Greer.

Unimaginable output: Global production of transistors

Approximate global production of transistors, per capita, selected years, 1955 to 2015
Approximate global production of transistors, per capita, selected years, 1955 to 2015

Global production of transistors has surpassed 20 trillion per second—hundreds of quintillions per year.  Transistors are the primary building blocks of modern electronic devices: computers, smartphones, TVs, radios, and other devices.  Transistors use semiconductor materials to amplify (think transistor radios) or switch (think digital computers) electronic signals and electrical power.  Transistors can be individual components, but are found in far greater numbers embedded in integrated circuits—in computer “chips.”

The graph above shows global production of transistors per year per person.  Per capita values are used here to make the size of the numbers more manageable.  In 1955, production was one transistor per 1,000 people—essentially zero.  Radios and TVs in the mid-’50s used vacuum tubes rather than transistors and integrated circuits.

Just ten years later, in 1965, production had increased 1,000-fold, to one transistor per person per year.  Transistor radios were gaining popularity in the 1960s.  Each radio contained several transistors—often 5 to 10.

While production in 1965 was one transistor per person per year, by 1975 it was nearly 1,500 per person.  Individual transistor components had been replaced by semiconductor computer chips, each containing thousands or millions of individual transistors.

The 1980s saw the proliferation of computers and home electronics.  By 1985 global production of transistors had surpassed 40 thousand per person per year.  By 2000 it was 65 million.  Today it is 56 billion per person.

The world now produces more transistors in one second that it did in one year in 1980.

The global population could not afford to purchase, on average, 56 billion transistors per person per year if prices had remained at 1965 or 1985 levels.  In the latter-1950s, a transistor radio with 5 transistors cost nearly $500 in today’s dollars.   Now, for not much more money, you can buy an iPhone that contains hundreds of billions of transistors.

A pound of rice sells for approximately one dollar and contains about 25,000 grains.  For that same dollar you can buy—as part of a memory stick or a phone—not 25,000 transistors, but billions.  A transistor today is thousands of times cheaper than a grain of rice.

Much of the news about the world is negative: famine, genocide, fisheries collapse, climate change, extinctions, resource depletion.  But we also need to acknowledge that our global hyper-civilization is truly wondrous.  We have built human systems of nearly incomprehensible power and productivity.  This is both their great strength and their great peril.  Nonetheless, if we are to safeguard some version of this civilization into the future we must appreciate and value it, despite its profound flaws.  We must take the time to understand it.  And we must work together to reform it.

Graph sources: VLSI Research.   Note that values are approximate and were derived, not directly from data, but from an existing graph.  Thus, while overall trends and conclusions are robust, individual values for specific years are approximate.