Deep into the red: US national debt per family, 1816 to 2016

US national debt graph 1816 to 2016, dollars per family
United States national debt, per family of four, 1816-2016

In the United States, federal government debt is nearly $20 trillion. That works out to about $62,000 per person, or just under $250,000 for a hypothetical family of four. Adjusted for inflation, debt has doubled since 2002, and is five times higher than in 1982.

The graph above shows the increasing size of the US national debt. The time-frame is 1816 to 2016. The units are US dollars, adjusted for inflation. In the graph, some conflict periods are highlighted in a contrasting colour. Wars have caused rapid increases in government debt. Indeed, the wars in Iraq and Afghanistan (2002-2014) played significant roles in creating the unprecedented level of debt US families now must carry. Other factors include a financial meltdown and bailout, and tax cuts that eroded revenues and forced governments to fund a greater portion of their services with borrowed money. As visible in the graph, 1982 marks the beginning of the recent phase of debt expansion. That is also the beginning of the modern era of tax cutting—the implementation of the Reagan tax cuts. US citizens have enjoyed tax cuts, but have yet to pay for them.

The graph shows that periods of increasing national debt (the Civil War, WW I, and WW II) were followed by periods of declining debt. The question now is this: Does the US economy retain enough vigour, and do US citizens and businesses retain enough good sense and discipline, to pay down $20 trillion in federal government debt, trillions more in personal debt, and trillions more in city, county, and state debts? It is never wise to bet against America. But de-industrialization, rising income inequality, world-leading incarceration rates, uncontrolled gun crime, Detroit and similar rustbelt cities, legislative gridlock, crumbling infrastructure, and a retreat into ideology all raise serious concerns.

For comparison, Canadian national debt works out to about $80,000 (Cdn.) per hypothetical family of four. Canadians, however, must not feel in any way superior or safe, because the Canadian and US economies are so tightly tied. Rising US debt is a concern for all the world’s citizens.

Graph sources: U.S. Department of the Treasury, “TreasuryDirect: Historical Debt Outstanding–Annual” 

Turning fossil fuels into fertilizer into food into us: Historic nitrogen fertilizer consumption

Graph of historic global fertilizer use, including nitrogen fertilizer, 1850-2015
Global consumption of nitrogen fertilizer and other fertilizers, historic, 1850 to 2015

Last week’s blog post (Feeding the World) showed that farmers worldwide had, since 1950, quadrupled grain production. How is this possible? The answer is fertilizer; more specifically, nitrogen fertilizer. This graph shows global fertilizer use. In 1950, farmers applied less than 5 million tonnes of nitrogen (measured in terms of actual nutrient, not fertilizer product). In 2015, farmers applied more than 110 million tonnes. We managed to increase grain output fourfold largely by increasing nitrogen inputs 23-fold.

Nitrogen fertilizer is a fossil fuel product, made primarily from natural gas. One can think of a modern nitrogen fertilizer factory as having a large natural gas pipeline feeding into one end and a large pipe coming out the other carrying ammonia, a nitrogen-rich gas. To produce, transport, and apply one tonne of nitrogen fertilizer requires an amount of energy equal to almost two tonnes of gasoline. One reason we have been able to increase grain production fourfold since 1950, and human population threefold, is that we found a way to turn fossil fuels into plant nutrients into enlarged food supplies into us. With fertilizers, we can convert hydrocarbons into carbohydrates.

Dr. Vaclav Smil is an expert on the material flows, nutrient cycles, and energy transformations that underpin natural and human systems. He believes that without the capacity to turn fossil fuels into nitrogen fertilizers into enlarged harvests, nearly half the 7.4 billion people now on Earth could not be fed and could not exist. Smil calls factory-made nitrogen “the solution to one of the key limiting factors on the growth of modern civilization.” This blog highlights the many ways humans have managed to remove the limiting factors to the growth of modern civilization.

Finally, 1950 was long ago. Surely rapid increases in fertilizer consumption must have tapered off in recent years. That isn’t the case. Canadian consumption is rising especially rapidly. A look at Statistics Canada data (CANSIM 001-0069) reveals that Canadian nitrogen fertilizer consumption has increased 65 percent over the past decade (2006 to 2016). Like many countries, Canada is boosting food output by increasing the use of energy-intensive agricultural inputs.

Graph sources: Vaclav Smil, Enriching the Earth; UN FAO, FAOSTAT; International Fertilizer Industry Association, IFADATA; and Clark Gellings and Kelly Parmenter, “Energy Efficiency in Fertilizer Production and Use.”

Feeding the world: our struggle to multiply global grain production

Graph of global grain production historic 1950 to 2016
Global grain production, annual, 1950–2016

This blog post and the next (Turning fossil fuels into … food) look at the rapid expansion of our global food supply and how we’ve accomplished that feat. The graph above shows world grain production for the past 66 years: 1950 to 2016. The units are billions of tonnes of annual production of all grains: primarily wheat, corn, rice, barley, oats, and millet. The figures exclude oilseeds, tonnage of which is about one-fifth as large as that of grains.

By utilizing ever-increasing inputs of water, machinery, fuels, chemicals, technologically-enhanced seeds, and, especially, fertilizers, the world’s farmers have managed to quadruple global grain production since 1950, and to double production since 1975. This expansion has been accomplished on a largely unchanged land area. Farmers have doubled output since the mid-’70s on a cropland area that, according to the UN’s Food and Agriculture Organization (FAO), has increased by just 5 percent.

The UN projects that global human population will increase by 50 percent by the end of this century, to 11.2 billion. That enlarged population will likely be richer, on average, than today’s population. Thus, per-capita meat demand will probably rise. When we feed grains to livestock, we turn 5 to 10 grain Calories into 1 meat Calorie. Thus, diets rich in meat require higher levels of grain production. Coming on top of these drivers of increased grain consumption is the likely increase in demand for biofuels, biomass, and feedstocks for “the bioeconomy.” The Global Harvest Initiative is an industry group whose members include John Deere, Monsanto, Mosaic, and Dupont. The group asserts that there is a “Global Agricultural Imperative” to “nearly double global agricultural output by 2050 to respond to a rapidly growing population and to meet the consumer demands of an expanding middle class.” If this doubling is accomplished, it will mark an 8-fold increase over 1950 production levels. Few citizens or policymakers are aware that the bounty in our supermarkets and on our tables depends upon very rapid and difficult-to-sustain rates of growth in food production.

Graph sources: 1960-2016: United States Department of Agriculture (USDA) World Agricultural Supply and Demand Estimates (WASDE),  ; 1950 and 1955: Lester Brown and Worldwatch Institute, various publications. Brown and Worldwatch cite USDA, “World Grain Database,” unpublished printout, 1991.

This isn’t normal: 2,000 years of economic growth

Graph of gross world product (GWP) historic, for the past two thousand years
Gross World Product (GWP) over the long term, 1 CE – 2015 CE

The graph above places our 21st century global economy in its long-term context. It plots Gross World Product (GWP), the global aggregation of Gross Domestic Product (GDP). The time frame is the past 2,015 years: 1 CE (or AD) to 2015 CE. The units are trillions of US/international dollars adjusted for inflation (converted to 1990 dollars). The main source is Angus Maddison.  Pre-20th century values are, by necessity, informed estimates by Maddison.

The year 1870 is marked with a white circle. In the millennia before 1870, the size of the global economy barely grew at all. Then, not long before the eve of the 20th century, all Hell broke loose. The most recent ten or fifteen decades appear in our historical economic record like an explosion. For perhaps 98 percent of human history, the economic trendline has been almost flat—horizontal. Over the past century-and-a-half it has been almost vertical.

The late-19th, 20th, and early 21st centuries have not been “normal.” They have been extraordinary and wondrous. Equally extraordinary is how far we have gone to normalize what is clearly an abnormal situation. Though our lifestyles and expectations are now tightly bound to near-vertical trendlines we talk and act as if nothing out of the ordinary is happening, and that we can count on more of the same for the foreseeable future.

Moreover, the 20th and 21st century exceptionalism on display in this graph is not limited to economic growth. Graphs of energy use, population, cotton or iron production, water withdrawals, food production, automobile numbers, air-travel miles, and nearly any other economic metric will look nearly identical to the graph above: millennia of little or no growth, then a sudden spike. There is upon the Earth a wholly new kind of civilization.

Graph sources: Angus Maddison, The World Economy, vol. 2, Historical Statistics (Paris: OECD, 2006) Tables 7b and 8b; and World Bank, “World DataBank: World Development Indicators: GDP at market prices” 

The Rule of 70

Graph of an exponential curve illustrating exponential growth and the Rule of 70.
16-fold exponential increase caused by a constant 2.8 percent growth rate over 100 years

This graph’s smooth curve shows how an investment, economy, population, or any other quantity will grow at a constant rate of interest or growth—that is, at a constant percentage. In this case the percentage is 2.8 percent, compounded annually.

In the graph, in year 0 the value is 1. Soon, though, the value is twice as high, rising to 2. It doubles again to 4, doubles again to 8, and again to 16. An economy or investment growing at 2.8 percent per year will double every 25 years. Thus, it will double 4 times in a century: 2, 4, 8, 16.

There is a very useful tool for quickly calculating the doubling time for a given growth rate: the Rule of 70. If you know the percentage growth rate and want to know how long it will take an initial value to double, simply divide 70 by the rate. In this case, 70 divided by 2.8 = 25. The value doubles every 25 years and therefor increases 16-fold in 100 years.

By the Rule of 70 we can calculate that a growth rate of 7 percent will cause an initial value to double in just 10 years. China’s economy has been growing by more than 7 percent since the early 1990s. If a value—the size of China’s economy, for example—doubles every 10 years, it will go through 10 doublings in a century: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. If China’s economy maintained a 7 percent growth rate for a century it would become more than 1,000 times larger. It is important to recall such facts the next time the Dow or some other economic indicator falls on the news that Chinese growth has “slowed” to 7 percent or less.