Geoengineering: 12 things you need to know

Graphic showing various geoengineering methods

The following draws upon extensive research by ETC Group.  I have been privileged to serve on ETC’s Board of Directors for several years. 

1.  What is “geoengineering”?  It is the intentional, largescale, technological manipulation of Earth’s systems.  Geoengineering is usually discussed as a solution to climate change, but it could also be used to attempt to de-acidify oceans or fix ozone holes.  Here, I’ll concentrate on climate geoengineering.

2.  There are two main types of climate geoengineering:
i. Technologies to partially shade the sun in order to reduce warming (called “solar radiation management” or SRM).  For example, high-altitude aircraft could be used to dump thousands of tonnes of sulphur compounds into the stratosphere to form a reflective parasol over the Earth.
ii. Attempts to pull carbon dioxide (CO2) out of the air.  One proposal is ocean fertilization.  In theory, we could dump nutrients into the ocean to spur plankton/algae growth.  As the plankton multiply, they would take up atmospheric CO2 that has dissolved in the water.  When they die, they would sift down through the water column, taking the carbon to the ocean floor.

3.  The effects of geoengineering will be uneven and damaging.  For example, sun-blocking SRM technologies might lower the global average temperature, but regional temperature changes would probably be uneven.  Other geoengineering techniques—cloud whitening and weather modification—could similarly alter temperatures in some parts of the planet relative to others.  And if we change relative regional temperatures we would also shift wind and rainfall patterns.  Geoengineering will almost certainly cause droughts, storms, and floods.  Going further, however, all droughts, storms, and floods (even those that might have occurred in the absence of geoengineering) could come to be seen as caused by geoengineering and the governments controlling those climate interventions.  If we go down this path, there will no longer be any “acts of God”; weather will become a product of government.

4.  These technologies are dangerous in other ways.  Seeding the stratosphere with sulphur particles could catalyze ozone depletion.  Shifts in rain and temperature patterns may cause shifts in ecosystems and wildlife habitats.  Multiplying plankton biomass may affect fish species distribution and biodiversity.  Moreover, as with any enormously powerful technology, it is simply impossible to foresee the full range of unintended consequences.

5.  Geoengineering is unilateral, undemocratic, inequitable, and unjust.  In a geoengineered world, who will control the global thermostat?  Solar radiation management and similar schemes will inevitably be controlled by the dominant governments and corporations—a rich-nation “coalition of the dimming.”  But benefits and costs will be distributed unequally, creating winners and losers.  Where will less powerful nations appeal if they find themselves on the losing end?  Our climate interventions will be calibrated to maximize benefits to rich nations: the same countries that have benefited most from fossil fuel combustion and that have caused the climate crisis.  We appear to be contemplating a triple injustice: poor nations will be denied their fair share of the benefits of fossil fuel use; hit hardest by climate change; and left as collateral damage from geoengineering.  Finally, geoengineering is undemocratic in another way.  It is a choice to pursue technical interventions rather than social or political reforms.  It reveals that many governments and elites would risk damaging the stratosphere, hydrosphere, and biosphere rather than risk difficult conversations with voters, CEOs, or shareholders.

6.  Geoengineering embodies and proliferates a certain worldview: masculine, nature-dominating, imperialistic, managerial and technocratic, hostile to limits, and hubristic.

7.  Geoengineering will create conflicts.  Because technologies such as SRM are transboundary and have the potential to shift weather patterns they can lead to charges that other nations are stealing rain and, ultimately, food.  To get a sense of the potential for conflict, imagine the US reaction to unilateral deployment of weather- and climate-altering technologies by Russia or China.

8.  It is untestable.  Small-scale experiments with SRM or similar technologies will not reveal potential side-effects.  These will only become evident after planet-scale deployment, and perhaps years after the fact, as weather systems move toward new equilibria.

9.  Deployment may be irreversible.  Once we start we might not be able to stop.  Geoengineering would probably proceed alongside continued greenhouse gas (GHG) emissions.  But if we deploy sun-blocking technologies and simultaneously push atmospheric CO2 levels past 500 or 600 parts per million, we wouldn’t be able to terminate our dimming programs, no matter how damaging the effects of long-term geoengineering are revealed to be.  If we did stop, high GHG levels would trigger sudden and dramatic warming.  We risk locking ourselves into untestable, unpredictable, uncontrollable, and planet-altering technologies.

10. Can geoengineering “buy us time”?  Proponents argue that these technologies can buy us some time: time humanity needs in order to ramp up emissions reductions.  But geoengineering is more likely to buy time for the status quo, to prolong unsustainable fossil fuel production and energy inefficiency, and to blunt and delay urgent and effective action.  The effect of geoengineering is not so much to buy time as to waste time.

11. There will be attempts to pressure us into accepting geoengineering.  Geoengineering proponents may soon raise the alarm and claim that we must accept these risky technologies or face even worse damage from climate change.  “Desperate times call for desperate measures,”  they will say.  From these same sources may come arguments that geoengineering is necessary to hold global average temperature increases below 1.5 or 2 degrees and thus spare the world’s poorest and most vulnerable peoples.  Such arguments would be both ironic and duplicitous.  The same government and corporate leaders who today deny or downplay climate change, or deny the need for rapid action to cut emissions, may tomorrow be the one’s raising the alarm, and claiming that there is no solution other than geoengineering.  They may pivot from claiming that there is no problem to claiming that there is no alternative.

12. Geoengineering will be pushed by the rich and powerful.  A growing number of corporations, elites, and politicians see the solution to climate change, not in emissions reduction, but in massive techno-interventions into the atmosphere or oceans to block the sun or suck up carbon.  When he was CEO of Exxon, US Secretary of State Rex Tillerson said of climate change: “It’s an engineering problem, and it has engineering solutions.”  Exxon employs many geoengineering proponents and theorists.  Former executive at oil company BP and former Under-Secretary for Science in the Obama administration Steven Koonin is lead author of a report entitled Climate Engineering Responses to Climate Emergencies.   Virgin Airlines CEO Richard Branson offered a $25 million prize to anyone who could solve climate change by geoengineering.   Bill Gates and other Microsoft billionaires are funding geoengineering research.  Newt Gingrich is the former speaker of the US Congress and a Vice Chairman of Donald Trump’s transition team.  His views on geoengineering are worth quoting because they may be representative of a growing sentiment among political and corporate leaders.  Gingrich wrote in a 2008 fundraising letter:

“[T]he idea behind geoengineering is to release fine particles in or above the stratosphere that would then block a small fraction of the sunlight and thus reduce atmospheric temperature.

… Instead of imposing an estimated $1 trillion cost on the economy …, geoengineering holds forth the promise of addressing global warming concerns for just a few billion dollars a year.  Instead of penalizing ordinary Americans, we would have an option to address global warming by rewarding scientific innovation.

My colleagues at the American Enterprise Institute are taking a closer look at geoengineering, and we should too.  …

Our message should be: Bring on the American Ingenuity.  Stop the green pig.”

 

For reasons outlined above and many others, we must not go down the path of geoengineering.  These technologies—massive government and corporate interventions into the core flows and structures of the atmosphere, hydrosphere, and biosphere—are among the most dangerous initiatives ever devised.  Geoengineering must be banned; it is untestable, uncontrollable, unjust, probably irreversible, and potentially devastating.  There exist better, safer options: rapid and dramatic emissions reductions; and a government-led mobilization toward a transformation of global energy, transport, industrial, and food systems.

 

 

 

 

 

 

Carbon tax will not cause fossil fuel use to fall: Canada’s NEB

Graph of Canadian fossil fuel use and NEB projections to 2040
Canadian fossil fuel use, historic and projections to 2040

The graph above is based on data from a recent report by Canada’s National Energy Board (NEB)—a federal government agency.  The October 26 report, Canada’s Energy Future 2017, predicts that Canadians will be consuming fossil fuels at the same rate in 2040 as we are today.  The NEB is projecting that fossil fuel use will not fall, nor will attendant greenhouse gas (GHG) emissions.

The graph’s blue bars show Canadian fossil fuel use over the past 11 years.  The brown line shows the NEB’s projections for the future.  The units, exajoules, are not important.  What is important is that the NEB predicts no drop in fuel consumption.

Most important, is that the NEB’s projections take into account the federal government’s carbon tax.  Ottawa has announced that the provinces must impose a carbon tax of $10 per tonne in 2018, escalating to $50 per tonne by 2022.  All provinces must impose a tax, or some equivalent carbon-pricing scheme.

At the Paris climate talks in 2015, Canada joined other nations in committing to limit the global average temperature increase to 2.0 degrees C (relative to pre-industrial levels).  To help achieve that goal, Canada has made an international commitment to reduce its GHG emissions by 30 percent (relative to 2005 levels) by 2030.  The NEB is, in effect, saying that Canada will fail to meet its commitment of a 30 percent reduction; the carbon tax, along with all other measures announced so far, will not cause a decline in fossil fuel use or emissions.

The preceding should surprise no one.  The federal government’s carbon tax starts out at $10 per tonne of carbon—equivalent to about 2¢ per litre of gasoline.  Over the next half-decade, it rises to $50 per tonne—about 11¢ per litre.  Many Canadians do not know the price of gasoline to the nearest dime.  And gasoline prices over the past year were down as much as 40¢ compared to three years ago.  An 11¢ per litre carbon tax is not going to cause gasoline consumption to fall.  Similarly modest taxes on other fuels will likewise prove ineffective.

Canadians need to understand that they are being deceived.  Politicians—eager for re-election and afraid of hard conversations with voters—are understating the magnitude of the climate crisis and overestimating the effectiveness of our actions to counter the threat.

How do we actually reduce fossil fuel use, cut emissions, and stabilize the climate?  A carbon tax is needed, but it must be much higher: $200 to $300 per tonne—equivalent to 50¢ to 75¢ per litre of gasoline.  But such a tax is unbearable for citizens (and politicians) unless 100 percent of the total tax collected is rebated back to citizens on a per-capita basis.  We need a carbon-tax-and-refund system.  Under such a system, we would all pay taxes on gasoline, home heating fuel, etc. and pay indirectly on the energy embedded in our products.  Goods that required a lot of energy to produce or transport would cost more.  But offsetting these new costs, we would receive back all the carbon tax money collected, on a per-capita basis.  Thus, if a person’s energy consumption is below average, he or she would finish the year money ahead—his or her per-capita refund would exceed the carbon taxes paid.  On the other hand, someone who wants to drive a Hummer and heat and cool a huge home will come out money behind.  Another way of thinking about this tax-and-refund system is that it transfers money to those doing the right things from those doing the wrong things.  And the former group can take their carbon tax refunds and invest them in home energy retrofits, solar panels, and other emission-reduction measures, setting the stage for even larger carbon tax savings next year.

The NEB is telling us we’re not on track.  But we can change course.  Bold and rapid policy action now can reduce emissions by 30 percent and help limit temperature increases to 2 degrees.  But we must act.

Graph source: National Energy Board

A critically important solution to our climate crisis (and other crises)

Reconstructed wreckage of TWA Flight 800
US National Transportation Safety Board (NTSB) reconstruction of wreckage from TWA Flight 800

Ronald Wright’s A Short History of Progress is available as a book and as a five-part audio series—the 2004 CBC Massey Lectures.  (Listen here.)  In both its written and oral forms, A Short History of Progress is an accessible, eye-opening tour of humanity’s long historic journey—a look at the big picture and the long term.  It is aphoristic and packed with insights.  But one idea stands out.  Wright gets at this important idea by using the analogy of plane crashes.

Air travel today is very safe.  Mile for mile, your chances of being killed or injured while traveling on a commercial jetliner are about one one-hundredth your chances of suffering the same fate in your own car.  In 2016, zero people died in crashes of a US-based airlines operating anywhere in the world—the seventh year in a row that this was true (source here).

There’s a reason that airliners have become so safe: after every crash, well-resourced teams of highly-trained aviation experts are tasked with determining why a crash occurred, and once the cause is known the entire global aviation system implements changes to ensure that no plane in the future crashes for the same reasons.

Government agencies and airlines often expend enormous efforts to determine the cause of a crash.  The photograph above is of the reconstructed wreckage of TWA Flight 800, a Boeing 747 that crashed in 1996 after its fuel tank exploded, splitting the plane apart just ahead of the wings.  The plane crashed into the ocean off the coast of New York.  All 230 people aboard died.

The debris field covered several square miles.  In a massive effort, approximately 95 percent of the plane’s wreckage was salvaged from the sea.  The plane was painstakingly reconstructed.  And using the reconstructed plane as well as the flight data and cockpit voice recorders, the cause of the failure was traced back to a short circuit in wiring connected to the “fuel quantity indication system” in the centre fuel tank.  As a result of this investigation, changes were made to planes around the world to ensure that no similar crashes would occur.  As a result of crash investigations around the world, airlines and aircraft makers have made thousands of changes to airplane construction, crew training, air traffic control, airport security, airline maintenance, and operating procedures.  The results, as noted above, have been so successful that some years now pass without, for instance, a single fatality on a US airline.

Ronald Wright argues that the ruins and records of fallen civilizations can be investigated like airplane crash sites, and we can use the lessons we learn to make changes that can safeguard our current global civilization against similar crashes.  He writes that these ruined cities and civilizations are like “fallen airliners whose black boxes can tell us what went wrong” so that we can “avoid repeating past mistakes of flight plan, crew selection, and design.”  When Wright talks metaphorically about “flight plan,” consider our own plan to increase the size of the global economy tenfold, or more, this century.  And when he talks about crew selection, think about who’s in the cockpit in the United States.

Wright continues: “While the facts of each case [of civilizational collapse] differ, the patterns are alarmingly … similar.  We should be alarmed by the predictability of our mistakes but encouraged that this very fact makes them useful for understanding what we face today.”

Wright urges us to deploy our archaeologists, historians, anthropologists, ecologists, and other experts as crash-scene investigators—to read “the flight recorders in the wreckage of crashed civilizations,” and to take what we learn there and make changes to our own.  It is good advice.  It is, perhaps, the best advice our global mega-civilization will ever receive. 

While the crash of a jetliner may kill hundreds, the crash of our mega-civilization could kill billions.  And as more passengers pile in, as our global craft accelerates, and as the reading on the fuel-gauge drops and our temperature gauge rises, we should become more and more concerned about how we will keep our civilizational jetliner aloft through the storms to come.

Photo source: Newsday